
Comparing The Means of Many Independent
Samples

In this chapter we study analysis of variance (ANOVA). In Chapter 7 we considered the

comparison of two independent samples with respect to a quantitative variable . The

classical techniques for comparing the two sample means  and  are the test and the

confidence interval based on Student's  distribution. In this chapter we consider the

comparison of the means of  independent samples, where  may be greater than .

Example: sweet corn

When growing sweet corn, can organic methods be used successfully to control harmful

insects and limit their effect on the corn? In a study of this question researchers compared

the weights of ears of corn under five conditions in an experiment in which sweet corn was

grown using organic methods. The treatments were

Treatment 1: Nematodes

Treatment 2: Wasps

Treatment 3: Nematodes and wasps

Treatment 4: Bacteria

Treatment 5: Control

Ears of corn were randomly sampled from each plot and weighed. The results are given in

the table and figure below.
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The classical method of analyzing data from  independent samples is called an analysis of

variance, or ANOVA. In applying analysis of variance, the data are regarded as random

samples from  populations. We denote the means of these populations as 

and the standard deviations as . We test a null hypothesis of equality among

all  population means,

Why not repeated  tests?

It is natural to wonder why the comparison of the means of  samples requires any new

methods. For instance, why not just use a two-sample  test on each pair of samples?

The most serious difficulty with a naive "repeated  tests" procedure concerns Type I

error: The probability of false rejection of a null hypothesis may be much higher than it

appears to be.

For instance, suppose  and consider the null hypothesis that all four population

means are equal ( ) versus the alternative hypothesis that the

four means are not all equal. Among four means there are six possible pairs to compare.

Let's consider the risk of a Type I error for testing our primary null hypothesis that all

four means are equal by conducting six separate two-sample  tests. If any of the six 

tests finds a significant difference between a pair of means, we would reject our

primary null hypothesis that all four means are equal. A Type  error would occur if any

of the six  tests found a significant difference between a pair of means when in fact all

four means are equal.

The table below displays the overall risk of Type I error. It is clear that the researcher who

uses repeated  tests is highly vulnerable to Type I error unless  is quite small. The

difficulties illustrated by the table below are due to multiple comparisons. That is, many

comparisons on the same set of data. These difficulties can be reduced when the

comparison of several groups is approached through ANOVA.

The Basic One-Way Analysis of Variance
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The ANOVA model presented previously that compares the means of three or more groups

is called a one-way ANOVA. The term "one-way" refers to the fact that there is one variable

that defines the groups or treatments (e.g., in the sweet corn example the treatments were

based on the type of harmful insect/bacteria).

Notation

The th observation in group : 

Number of groups: 

Number of observations in group : 

Mean for group : 

Standard deviation for group : 

Total number of observations: 

Grand mean (mean of all the observations):

Pooled variance:

Pooled standard deviation:

Example: weight gain of lambs

The following table shows the weight gains (in 2 weeks) of young lambs on three different

diets. (These data are fictitious, but are realistic in all respects except for the fact that the

group means are whole numbers.)
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i Ȳ i

i si

n = ∑
I

i=1 ni
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The total number of observations is  and the grand mean is

The pooled variance and standard deviation are calculated as

and

Variation within groups

The pooled variance is a weighted average of the group sample variances, and thus a

sensible representative value for the variability within groups.

Note that the pooled variance depends only on the variability within the groups and not

on their mean values.

The pooled variance  is known as the mean square within groups, or MSW. The

numerator of MSW is known as the sum of squares within groups, or SSW, while the

denominator is the degrees of freedom within groups.

n = ∑3
i=1 ni = 3 + 5 + 4 = 12
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Variation between groups

For two groups, the difference between the groups is simply described by .

How can we describe between-group variability for more than two groups?

One naive idea is to simply compute the sample variance of the group means. The

mean square between groups, or MSB is motivated by this idea. Specifically,

where the numerator SSB is the sum of squares between groups and the

denominator  is the degrees of freedom between groups.

The SSB and MSB measure the variability between the sample means of the groups.

For the data in weight gain of lambs example, one has

and

A fundamental relationship of ANOVA

The name analysis of variance derives from a fundamental relationship involving SSB and

SSW. Consider an individual observation . It is obviously true that

This equation expresses the deviation of an observation from the grand mean as the sum of

two parts: a within-group deviation  and a between-group deviation . It
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is also true (but not at all obvious) that the analogous relationship holds for the

corresponding sums of squares; that is

which, by rewriting each of the sums on the right-hand side, can be expressed as

The quantity on the left-hand side is called the total sum of squares, or SSTO:

Note that SSTO measures variability among all  observations in the  groups. It follows that

The preceding fundamental relationship shows how the total variation in the data set can be

analyzed, or broken down, into two interpretable components: between-sample variation

and within-sample variation.

Note that the corresponding degrees of freedom have the same relationship; that is

where the left-hand side is called the total degrees of freedom.

For the data in weight gain of lambs example, we found  lb; we calculate SSTO as

For these data, we found that  and . We verify that

Also, we found that the degrees of freedom within groups  and the degrees of freedom

between groups . We verify that
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The ANOVA Table

When working with the ANOVA quantities, it is customary to arrange them in a table. The

table below shows the ANOVA for the lamb weight-gain data. Notice that the ANOVA table

clearly shows the additivity of the sums of squares and the degrees of freedom.

The Analysis of Variance Model

We think of  as a random observation from group , where the population mean of group

 is . It can be helpful to think of ANOVA in terms of the following model:

where

: grand population mean,

: effect of group ,

: random error associated with the th observation in group i.

Thus the preceding model can be stated in words as

The group effect  can be regarded as the difference between the population mean for

group , , and the grand population mean, . Thus,

and the preceding model becomes

The null hypothesis
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is equivalent to

If  is false, then at least some of the groups differ from the others. If  is positive, then

observations from group  tend to be greater than the overall average; if  is negative, then

data from group  tend to be less than the overall average.

The population parameters  and  can be estimated by the corresponding sample

quantities.

Putting theses estimates together, we have

While the terms "between-groups" and "within-groups" are not technical terms, they are

useful in describing and understanding the ANOVA model. Computer software and other

texts commonly refer to these sources of variability as treatment (between groups) and

error (within groups).

For the data in weight gain of lamb example, the estimate of the grand population mean is

. The estimated group effects are

Thus, we estimate that Diet 2 increases weight gain by 2 lb on average (when compared to

the average of the three diets), Diet 1 decreases weight gain by an average of 2 lb, and Diet

3 decreases weight gain by 1 lb, on average.

When we conduct an analysis of variance, we are comparing the sizes of the sample group

effects, the 's, to the sizes of the random errors in the data, the 's. We can see that

The Global  Test

The global null hypothesis is

against the alternative hypothesis
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Note that  is compound (unless ), and so rejection of  does not specify which 

's are different. If we reject , then we conduct a further analysis to make detailed

comparisons among the 's.

The  distribution

The form of an  distribution depends on two parameters: the numerator degrees of

freedom and the denominator degrees of freedom. Critical values for the  distribution

are given in  Table. Note that  Table occupies 10 pages, each page having a different

value of the numerator df. As a specific example, for numerator  and denominator

, we find in  Table that ; this value is shown in the figure below.

The  test is a classical test of the preceding global null hypothesis. The test statistic, the

 statistic, is calculated as follows:

From the definitions of the mean squares, it is clear that  will be large if the discrepancies

among the group means ( 's) are large relative to the variability within the groups. Thus,

large values of  tend to provide evidence against  (evidence for a difference among the

group means).

It can be shown mathematically that the null distribution of the test statistic  is the 

distribution with the numerator df being the df between groups and the denominator df

being the df within groups. Specifically,

Therefore,  is rejected at the  level of significance if

For the data in weight gain of lamb example, the global null hypothesis and alternative can

be stated verbally as
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or symbolically as

From the ANOVA table we find

The degrees of freedom can also be read from the ANOVA table as numerator df  and

denominator df . From  Table we find . So -value 

(Computer software gives -value ). Thus, there is a lack of significant evidence

against ; there is insufficient evidence to conclude that there is any difference among the

diets with respect to population mean weight gain.

Linear Combinations of Means

In many studies, interesting questions can be addressed by considering linear combinations

of the group means. A linear combination  is a quantity of the form

where the 's are the multipliers of the 's.

Standard error of a linear combination

Each linear combination  is an estimate, based on the 's, of the corresponding linear

combination of the population means ( 's). As a basis for statistical inference, we need to

consider the standard error of a linear combination, which is calculated as follows.

The standard error of the linear combination

is

Confidence intervals

Linear combinations of means can be used for testing hypotheses and for constructing

confidence intervals. Critical values are obtained from Student's  distribution with df being

H0 : μ1 = μ2 = μ3 v.s. HA :  The μi's are not all equal.
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mi Ȳ i

L Ȳ i
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the degrees of freedom within group, i.e., . Confidence intervals are constructed using

the familiar Student's  format.

In general, a  confidence interval for the linear combination  is

Multiple Comparisons

After finding significant evidence for a difference among population means 

using a global  test, we wish to conduct pairwise comparisons between different

population means to further detect where the difference lies in. However, repeated  tests

can lead to an increased overall risk of Type I error. The Bonferroni's method is one

popular method to control the overall risk of Type I error.

The Bonferroni's method is based on a very simple and general relationship: The probability

that at least one of several events will occur cannot exceed the sum of the individual

probabilities. For instance, suppose we conduct five tests of hypotheses, each at 

. Then the overall risk of Type I error  (the chance of rejecting at least one of the six

hypotheses when in fact all of them are true) cannot exceed .

Turning this logic around, suppose an investigator plans to conduct five tests of hypotheses

and wants the overall risk of Type I error not to exceed . A conservative approach

is to conduct each of the separate tests at the significance level ; this

is called a Bonferroni adjustment.

A Bonferroni adjustment can also be made for confidence intervals. For instance, suppose

we wish to construct five confidence intervals and desire an overall probability of  that

all the intervals contain their respective parameters ( ). Then this can be

accomplished by constructing each interval at confidence level  (because

 and ).

In general, to construct  Bonferonni-adjusted confidence intervals with an overall

probability of  that all the intervals contain their respective parameters, we

construct each interval at confidence level . Formally, the Bonferonni-

adjusted  confidence interval for  is

where the standard error

Note that the application of Bonferroni's method requires unusual critical values, so

standard tables are not sufficient. Bonferroni Table provides Bonferroni multipliers for
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confidence intervals that are based on a  distribution.

Example: oysters and seagrass

In a study to investigate the effect of oyster density on seagrass biomass, researchers

introduced oysters to thirty 1-m  plots of healthy seagrass. At the beginning of the study

the seagrass was clipped short in all plots. Next, 10 randomly chosen plots received a high

density of oysters; 10, an intermediate density; and 10, a low density. As a control, an

additional 10 randomly chosen clipped 1-m  plots received no oysters. After 2 weeks, the

belowground seagrass biomass was measured in each plot (g/m  ). Data from some plots

are missing. A summary of the data as well as the ANOVA table follow.

The -value for the global  test is , indicating that there is significant evidence of a

difference among the biomass means under these experimental conditions. We thus

proceed with pairwise comparisons to further detect which two conditions are different. To

control the overall risk of Type I error, we calculate the Bonferroni-adjusted  confidence

intervals for the total of six comparisons. Each individual confidence interval shall be

constructed at confidence level  since  and .

The following table summarizes the Bonferroni-adjusted confidence intervals for the total

six pairwise comparisons.
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Unfortunately, the Bonferroni intervals are often overly conservative so that the actual

value of  is much less than the desired overall risk of Type I error, and thus too much

power is sacrificed for Type I error protection. More complex procedures such as

Fisher's Least Significant Difference and Tukey's Honest Significant Difference are

able to achieve higher power than Bonferroni.

An advantage of the Bonferroni method is that it is widely applicable and can easily be

generalized to situations beyond ANOVA.

Conditions of ANOVA

The ANOVA techniques described in this chapter, including the global F test, are valid if the

following conditions hold.

Design conditions

It must be reasonable to regard the groups of observations as random samples

from their respective populations.

The  samples must be independent of each other.

Population conditions

The  population distributions must be (approximately) normal with equal

standard deviations:

α
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σ1 = σ2 = ⋯ = σI .


