
Linear Regression and Correlation

In this chapter we discuss some methods for analyzing the relationship between two

quantitative variables,  and . Linear regression and correlation analysis are techniques

based on fitting a straight line to the data.

Example: dissolved oxygen

The level of dissolved oxygen in a river is one measure of the overall health of the river.

Researchers recorded water temperature (°C) and level of dissolved oxygen (mg/L) for 75

days at Dairy Creek in California. The figure below shows a scatterplot of the data, with

The scatterplot suggests that higher water temperatures ( ) are associated with lower

levels of dissolved oxygen ( ).

The Correlation Coefficient

Suppose we have a sample of  pairs for which each pair represents the measurements of

two variables,  and . If a scatterplot of  versus  shows a general linear trend, then it

is natural to try to describe the strength of the linear association. We will learn how to

measure the strength of linear association using the correlation coefficient.

Example: length and weight of snakes

In a study of a free-living population of the snake Vipera bertis, researchers caught and

measured nine adult females. Their body lengths and weights are shown and displayed as a
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scatterplot in the following table and figure, separately. The number of observations is

.

The scatterplot shown in the preceding figure shows a clear upward trend. We say that

weight shows a positive association with length, indicating that greater lengths are

associated with greater weights. Thus, snakes that are longer than the average length of

 tend to be heavier than the average weight of . The line superimposed on

the plot is called the fitted regression line or least-squares line of  on . We will learn

how to compute and interpret the regression line later.

Measuring strength of linear association

How strong is the linear relationship between snake length and weight? Are the data points

tightly clustered around the regression line, or is the scatter loose? To answer these

questions we will compute the correlation coefficient, a scale-invariant numeric measure of

the strength of linear association between two quantitative variables.

To understand how the correlation coefficient works, consider again the snake length and

weight example. Rather than plotting the original data, the figure and table below show the

standardized data (Z scores); note that the figure looks identical to our original figure

except now our scales are unit-less.
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Dividing the plot into quadrants based on the sign of the standardized score.

Most points fall into the upper-right and lower-left quadrants, indicating positive

products of standardized scores.

Upper-left and lower-right quadrants have points with negative products of

standardized scores.

The sum of these products provides a numeric measure of dominant quadrants.

Positive association between length and weight leads to a positive sum of standardized

score products. A negative relationship would yield a negative sum, and no linear

relationship would result in a balanced sum of zero.



The correlation coefficient is based on this sum. It is computed as the average product of

standardized scores (using  rather than  to compute the average):

From this formula it is clear that  and  enter  symmetrically; therefore, if we were to

interchange the labels  and  of our variables,  would remain unchanged.

Interpreting the correlation coefficient

The correlation coefficient is unit-free and ranges between -1 and 1.

The sign of the correlation indicates the sign of the relationship (positive or negative)

and matches the sign of the slope of the regression line.

The closer the correlation is to -1 or 1, the stronger the linear relationship between 

and .

A correlation of -1 or 1 indicates a perfect linear relationship, while a correlation of

zero means no linear relationship between  and , but there might still be a non-

linear relationship.

The figure below displays several examples with a variety of correlation coefficient values.

For the data in length and wight of snakes example, we showed that for the snake data the

sum of the products of the standardized scores is 7.5494. Thus, the correlation coefficient

for the lengths and weights of our sample of nine snakes is about 0.94.

In this example we may also refer to the value 0.94 as the sample correlation, since the

lengths and weights of these nine snakes comprise a sample from a larger population. The

sample correlation is an estimate of the population correlation (often denoted by the Greek

letter "rho", ).
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n − 1 n

r =
n

∑
i=1

( )( ) .
1

n − 1

Xi − X̄

sX

Yi − Ȳ
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In some investigations it is not a foregone conclusion that there is any relationship between

 and . It then may be relevant to consider the possibility that any apparent trend in the

data is illusory and reflects only sampling variability. In this situation it is natural to formulate

the null hypothesis

or, equivalently

or symbolically as

A traditional approach to investigate the null hypothesis is to use a  test that is based on

the test statistic

The null distribution of the test statistic is , i.e.,

Therefore,  is rejected at the  level of significance if

Example: blood pressure and platelet calcium

It is suspected that calcium in blood platelets may be related to blood pressure. As part of a

study of this relationship, researchers recruited 38 subjects whose blood pressure was

normal (i.e., not abnormally elevated). For each subject two measurements were made:

pressure (average of systolic and diastolic measurements) and calcium concentration in the

blood platelets. The data are shown in the figure below. The sample size is , and the

sample correlation is .
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We wish to test the null hypothesis that there is no linear relationship between blood

pressure and blood platelet calcium. Let us choose . The test statistic is

From  Table with , we find . Thus, we find -value

 (two-sided), and we reject . The data provide strong evidence

that platelet calcium is linearly related with blood pressure.

The Fitted Regression Line

We learned how the correlation coefficient describes the strength of linear association

between two numeric variables,  and . In this section we will learn how to find and

interpret the line that best summarizes their linear relationship.

Example: ocean temperature

Consider a data set for which there is a perfect linear relationship between  and , for

example, temperature measured in  Celsius and  Fahrenheit. The following figure

displays 20 weekly ocean temperatures (in both °C and °F) for a coastal California city along

with a line that perfectly describes the relationship: .
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A summary of the data appears in the following table.

Because  and  are measuring the same variable (temperature), it stands to reason that a

water specimen that is  SD above average in °C ( ) will also be 1 SD above

average in °F ( ). Combined, these values can describe the slope of the line that

fits these data exactly:

In this example we also happen to know the equation of the line that describes the Celsius

to Fahrenheit conversion. The slope of this line is , the same value we found previously.

In perfect linear relationships (i.e., when ) the line that fits the data exactly will

have slope  (the sign of the slope matches the sign of the correlation

coefficient) and passes through the point .

This line is sometimes referred to as the SD line. Our previous temperature example

displays this property.

But what about situations in which  is not exactly , that is, when the relationship

between  and  is less than perfectly linear?

In the dissolved oxygen example, we observed a scatterplot indicating that the amount of

dissolved oxygen in a river and water temperature appear to be linearly related (

). The following figure displays a scatterplot of these data along with the SD line (dashed

line) and fitted regression line (solid line). Each solid triangle indicates the mean dissolved

oxygen level for a range of temperatures specified by the shading.
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The dissolved oxygen example shows that the SD line tends to overestimate the mean value

of  for below average  values and underestimate the mean value of  for above average

 values.

Our examples illustrate that if the relationship is not perfect, the relationship between

the mean  values and  values has a flatter slope.

Mathematically, it can be shown that the line that is best suited to predicting  (the so

called least-squares or fitted regression line) has a slope equal to  and

passes through the point .

That is, for  values one standard deviation above average, the mean  value will only

be  standard deviations above average (assuming that  is positive; if  is negative,

then for  values one standard deviation above average, the mean  value will be 

standard deviations below average).

For the dissolved oxygen data, the slope of the fitted regression line is

meaning that each additional 1 °C increase in water temperature is associated with a 0.22

mg/L decrease in dissolved oxygen level, on average.

Equation of the fitted regression line.

The equation of a straight line can be written as
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where  is the -intercept and  is the slope of the line. The slope  is the rate of

change of  with respect to .

 is the dependent/response variable while  is the independent/explanatory variable.

The fitted regression line of  on  is written . We write  (read " -

hat") in place of  to remind us that this line is providing only estimated or predicted 

values; unless the correlation is , we don't expect the data values to fall exactly on

the line.

The fitted regression line estimates the mean value of  for any given value of .

For the fitted regression line, one has

The formula for the intercept indicates that the fitted regression line passes through the

joint mean  of our data.

For the dissolved oxygen data, we found that the slope of the fitted regression line to be

. Using this value we find the intercept,

Thus, our fitted regression line is .

The residual sum of squares

We now consider a statistic that describes the scatter of the points about the fitted

regression line. The equation of the fitted line is . Thus, for each observed 

in our data there is a predicted  value of

Also associated with each observed pair  is a quantity called a residual, defined as

A summary measure of the distances of the data points from the regression line is the error

sum of squares, or SSE, which is defined as follows:

For the dissolved oxygen data, the table below indicates how SSE would be calculated from

its definition. The values displayed are abbreviated to improve readability.
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Y X Ŷ = b0 + b1X Ŷ Y

Y Y

±1

Y X

b1 = r , b0 = Ȳ − b1X̄.
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Interpreting the fitted regression line

Slope: The average/expected/typical change in  when  increases by 1 unit.

Intercept: The average/expected/typical value of  when . The intercept could

have no practical meaning, for example,  does not make sense for the snake

data.

Predict a value of  based on a value of : Substitute values into  to predict a  ( ).

Calculate the error from the fitted regression line: For a specific pair of observations

, the error for  is 

Several facts:
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The least-squares criterion

Many different criteria can be proposed to define the straight line that “best” fits a set of

data points. The classical criterion is the least-squares criterion:

The "best" straight line is the one that minimizes the error sum of squares (SSE).

The formulas given for  and  were derived from the least-squares criterion by applying

calculus to solve the minimization problem. The fitted regression line is also called the

"least-squares line".

The residual standard deviation

A measure derived from the error sum of squares (SSE) and easier to interpret is the

residual standard deviation,

The residual standard deviation tells how far above or below the regression line points

tend to be. Thus, the residual standard deviation specifies how far off predictions made

using the regression model tend to be.

For the dissolved oxygen data, the residual standard deviation is

Thus, predictions for the levels of dissolved oxygen based on the regression model tend to

deviate by about 1.21 mg/L on average.

The coefficient of determination

We have said that the magnitude of  describes the tightness of the linear relationship

between  and  and have seen how its value is related to the slope of the regression line.

When squared, it also provides an additional and very interpretable summary of the

regression relationship. The coefficient of determination, , describes the proportion of

the variance in  that is explained by the linear relationship between  and .
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For the dissolved oxygen data, we found , so . Thus,  of the

variance in dissolved oxygen level is explained by the linear relationship between dissolved

oxygen level and water temperature.

Parametric Interpretation of Regression: The Linear
Model

One use of regression analysis is simply to provide a concise description of the data. The

quantities  and  locate the regression line, and  describes the scatter of the points

about the line. For many purposes, however, data description is not enough. In this section

we consider inference from the data to a larger population.

Conditional populations and conditional distributions

A conditional population of  values is a population of  values associated with a fixed, or

given, value of . Within a conditional population we may speak of the conditional

distribution of . The mean and standard deviation of a conditional population distribution

are denoted as

Consider the variables  Height and  Weight for a population of young men. The

conditional means and standard deviations are

Thus,  and  are the mean and standard deviation of weight in the subpopulation of

men whose height is . Of course, there is a different subpopulation for each value of .

The linear model

When we conduct a linear regression analysis, we think of  as having a distribution that

depends on . The analysis can be given a parametric interpretation if two conditions are

met.

Linearity:  where  is a linear function of X; that is

. Thus

Constancy of standard deviation:  does not depend on . We denote this

constant value as .
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b0 b1 se

Y Y

X

Y

E(Y |X) = μY |X =  Population mean Y  value for a given X

Var(Y |X) = σ2
Y |X =  Population variance of Y  values for a given X

X = Y =

μY |X =  Mean weight of men who are X inches tall

σY |X =  SD of weights of men who are X inches tall

μY |X σY |X

X X

Y

X

Y = μY |X + ε μY |X

μY |X = β0 + β1X

Y = β0 + β1X + ε.

σY |X X

σε



In the linear model , the  term represents random error. We include this

term in the model to reflect the fact that  varies, even when  is fixed.

Estimation in the linear model

Consider now the analysis of a set of  data. Suppose we assume that the linear

model is an adequate description of the true relationship of  and . Suppose further that

we are willing to adopt the following random subsampling model:

For each observed , the corresponding observed  is viewed as randomly chosen

from the conditional population distribution of  values for that .

Within the framework of the linear model and the random subsampling model, the quantities

, , and  calculated from a regression analysis can be interpreted as estimates of

population parameters:

 is an estimate of .

 is an estimate of .

 is an estimate of .

From the summaries of the snake data, we can compute the following regression

coefficients  and  (computing these yourself from the

provided summaries would be a good exercise). Thus,

301 is our estimate of .

7.19 is our estimate of .

12.5 is our estimate of .

Statistical inference concerning 

The linear model provides interpretations of , , and  that take them beyond data

description into the domain of statistical inference. In this section we consider inference

about the true slope  of the regression line. The methods are based on the condition that

the conditional population distribution of  for each value of  is a normal distribution.

This is equivalent to stating that in the linear model of , the  values

come from a normal distribution.

The standard error of 

Within the context of the linear model,  is an estimate of . Like all estimates calculated

from data,  is subject to sampling error. The standard error of  is
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For the snake data, we found that  and . The standard error of

 is

Confidence interval for 

In many studies the quantity  is a biologically meaningful parameter and a primary aim of

the data analysis is to estimate . A confidence interval for  can be constructed by the

familiar method based on the SE and Student's  distribution.

A  confidence interval for  is constructed as

For the snake data, we found that . There are 

observations; we refer to  Table with , and obtain . The

 confidence interval is

or . We are  confident that the true slope of the regression of weight on

length for this snake population is between 4.94 gm/cm and 9.45 gm/cm; this is a rather

wide interval because the sample size is not very large.

Testing the hypothesis: 

In some investigations it is not a foregone conclusion that there is any linear relationship

between  and . It then may be relevant to consider the possibility that any apparent

trend in the data is illusory and reflects only sampling variability. In this situation it is natural

to formulate the null hypothesis

Within the linear model, this hypothesis can be translated as

A  test of  is based on the test statistic

The null distribution of the test statistic is . Specifically,

 is rejected at the  level of significance if
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While the forms of the test statistic are quite different, testing  is equivalent to

testing . Recall that a population correlation of zero indicates that there is no

linear relationship between  and . In this case, the slope that best summarizes "no linear

relationship" is a slope of zero.

Note that

One can verify that the test statistic for  is equal to the test statistic for

, i.e.,

For the snake data, we found that . The test statistic is

There are  observations; we refer to  Table with , and obtain

. Thus, we find that -value  and we reject . The data

provide sufficient (and very strong) evidence to conclude that the true slope of the

regression of snake body weight on body length in this population is nonzero.

Note that the test on  does not ask whether the relationship between  and  is

linear. Rather, the test asks whether, assuming that the linear model holds, we can conclude

that the slope is nonzero. It is therefore necessary to be careful in phrasing the conclusion

from this test. For instance, the statement "There is a significant linear trend" could easily

be misunderstood.

Conditions for inference

The quantities , and  can be used to describe a scatterplot that shows a linear

trend. However, statistical inference based on these quantities depends on certain

conditions concerning the design of the study, the parameters, and the conditional

population distributions.

Design conditions.

Random subsampling model: For each observed , the corresponding observed 

is viewed as randomly chosen from the conditional population distribution of 

values for that .

Conditions concerning parameters. The linear model states that

p-value  = 2 × P(tn−2 > |T |) < α or |T | > tn−2(α/2).
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.

 does not depend on .

Condition concerning population distributions.

The confidence interval and  test are based on the conditional population

distribution of  for each fixed  having a normal distribution.
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