
Description of Samples and Populations

Introduction

Variable: a characteristic of a person or a thing that can be assigned a number or a

category.

Categorical variable: a variable that records which of several categories a person or

thing is in, either nominal or ordinal.

Gender (male, female), eye color (blue, brown, green), or country of origin (USA,

Canada, UK).

Educational attainment (elementary, high school, college, postgraduate) or Likert

scale responses (strongly disagree, disagree, neutral, agree, strongly agree).

Numeric variable: a variable that records the amount of something, either continuous or

discrete.

Weight of a baby.

Cholesterol concentration in a blood specimen.

Number of bacteria colonies in a petri dish.

Length of a DNA segment in basepairs.

Frequency Distributions

Frequency distribution: a display of the frequency, or number of occurrences, of each

value in the data set.

Example: color of poinsettias

Poinsettias can be red, pink, or white. In one investigation of the hereditary mechanism

controlling the color, 182 progeny of a certain parental cross were categorized by color.

Table:

Color Frequency (number of plants)

Pink 34

Red 108

White 40

Total 182

Bar chart:

In [2]: library(ggplot2)
g <- ggplot(data = data.frame(Frequency = c(108, 34, 40), 



Example: infant mortality

The following table shows the infant mortality rate (infant deaths per 1,000 live births) in

each of seven countries in South Asia, as of 2013.

Country Infant mortality rate (deaths per 1,000 live births)

Bangladesh 47.3

Bhutan 40.0

India 44.6

Maldives 25.5

Nepal 41.8

Pakistan 59.4

Sri Lanka 9.2

                              Color = c('Red', 'Pink', 'White')), 
            aes(x = Color, y = Frequency)) +
    geom_bar(stat="identity") +
    geom_text(aes(label = Frequency), vjust = 1.6, color = "white", size = 5)+
    theme_bw() +
    theme(text = element_text(size = 20))
options(repr.plot.width=10, repr.plot.height=5)
g

In [7]: g <- ggplot(data = data.frame(x = c(47.3, 40.0, 44.6, 25.5, 41.8, 59.4, 9.2)), 
            aes(x = x)) +
    geom_dotplot(binwidth = 1) +
    scale_x_continuous(name = 'Infant mortality rate', 
                       breaks = seq(10, 60, 10)) +
    scale_y_continuous(NULL, breaks = NULL) +
    theme_bw() +
    theme(text = element_text(size = 20), aspect.ratio=1/5)
options(repr.plot.width=10, repr.plot.height=5)
g



Relative frequency

The frequency scale is often replaced by a relative frequency scale:

As another option, a relative frequency can be expressed as a percentage frequency.

Color Frequency (number of plants) Relative frequency Percent frequency

Pink 34 .19 19

Red 108 .59 59

White 40 .22 22

Total 182 1.00 100

Relative frequency =
Frequency

n

In [90]: g1 <- ggplot(data = data.frame(Frequency = c(108, 34, 40), 
                               Color = c('Red', 'Pink', 'White')), 
             aes(x = Color, y = Frequency / sum(Frequency))) +  
    geom_bar(stat="identity") + 
    geom_text(aes(label = round(Frequency / sum(Frequency), 2)), 
              vjust = 1.6, color = "white", size = 5)+
    labs(y = 'Relative frequency') +
    theme_bw() +
    theme(text = element_text(size = 20))
g2 <- ggplot(data = data.frame(Frequency = c(108, 34, 40), 
                               Color = c('Red', 'Pink', 'White')), 
             aes(x = Color, y = Frequency / sum(Frequency))) +  
    geom_bar(stat="identity") + 
    geom_text(aes(label = paste0(100 * round(Frequency / sum(Frequency), 2), 
                                 '%')), vjust = 1.6, color = "white", 
              size = 5)+
    scale_y_continuous(name = 'Percent frequency', labels=scales::percent) +
    theme_bw() +
    theme(text = element_text(size = 20))
library(patchwork)



Grouped frequency distributions and histograms

For many data sets, it is necessary to group the data in order to condense the information

adequately. (This is usually the case with continuous variables.)

Example: forced expiratory volume in children

A total of 654 children, comprising 336 boys and 318 girls, underwent examination to

measure their forced expiratory volume in liters.

Female   Male 
   318    336 

options(repr.plot.width=8, repr.plot.height=4)
g1 + g2

In [91]: library(isdals)
data(fev)
fev$Gender <- ifelse(fev$Gender == 0, 'Female', 'Male')
table(fev$Gender)
g <- ggplot(data = fev, aes(x = FEV, y = ..density..)) +
    geom_histogram(color="black", fill = 'white', bins = 10) + 
# can also change bins to obtain finer or coarser histograms
    labs(x = "Forced expiratory volume (liters)", y = "Relative frequency") +
    facet_wrap(~Gender) +
    theme_bw() +
    theme(text = element_text(size = 20))
options(repr.plot.width=8, repr.plot.height=4)
g



When discussing a set of data, we want to describe the shape, center, and spread of the

distribution. The shape of a distribution can be indicated by a smooth curve that

approximates the histogram.

Shapes of distributions

A common shape for biological data is unimodal (has one mode) and is somewhat skewed

to the right, as in (c). Approximately bell-shaped distributions, as in (a), also occur.

Sometimes a distribution is symmetric but differs from a bell in having long tails; an

exaggerated version is shown in (b). Left-skewed (d) and exponential (e) shapes are less

In [92]: g <- ggplot(data = fev, aes(x = FEV, y = ..density..)) +
    geom_histogram(color="black", fill = 'white', bins = 15) + 
# can also change bins to obtain finer or coarser histograms
    geom_density(adjust = 1.5) +
    #geom_vline(aes(xintercept = mean(FEV)), col = 'orange')+
    #geom_vline(aes(xintercept = median(FEV)), col = 'skyblue')+
    labs(x = "Forced expiratory volume (liters)", y = "Relative frequency") +
    facet_wrap(~Gender) +
    theme_bw() +
    theme(text = element_text(size = 20))
options(repr.plot.width=8, repr.plot.height=4)
g



common. Bimodality (two modes), as in (f), can indicate the existence of two distinct

subgroups of observational units.

How to tell if a distribution is left skewed or right skewed

A skewed distribution occurs when one tail is longer than the other. Skewness defines the

asymmetry of a distribution.

Skewed to the right: The mean is greater than the median.

Skewed to the left: The mean is less than the median.

The mean is the average of a data set.

The mode is the most common number in a data set.

The median is the middle of the set of numbers.

In [9]: # Normal distribution
g1 <- ggplot(data = data.frame(x = rnorm(1000)), 
             aes(x = x, y = after_stat(density))) +
    geom_histogram(color="black", fill = 'white', bins = 20) +
    geom_density() +
    geom_vline(aes(xintercept = mean(x)), col = 'orange') +
    geom_vline(aes(xintercept = median(x)), col = 'blue', 
               linetype = 'longdash') +
    labs(x = "", y = "Relative frequency") +
    theme_bw() +
    theme(text = element_text(size = 20))
# Gamma distribution
g2 <- ggplot(data = data.frame(x = rgamma(1000, shape = 0.6)), 
             aes(x = x, y = after_stat(density))) +
    geom_histogram(color="black", fill = 'white', bins = 20) +
    geom_density() +
    geom_vline(aes(xintercept = mean(x)), col = 'orange') +
    geom_vline(aes(xintercept = median(x)), col = 'blue', 
               linetype = 'longdash') +



Descriptive Statistics: Measures of Center

A numerical measure calculated from sample data is called a statistic.

Descriptive statistics are statistics that describe a set of data.

Usually the descriptive statistics for a sample are calculated in order to provide

information about a population of interest.

Two most widely used measures of center: the median and the mean.

Median 

The sample median is the value that most nearly lies in the middle of the sample, i.e.,

the data value that splits the ordered data into two equal halves.

To find the median, first arrange the observations in increasing order. In the array of

ordered observations, the median is the middle value (if  is odd) or midway between

the two middle values (if  is even).

Example: weight gain of lambs

The following are the 2-week weight gains (lb) of six young lambs of the same breed

that had been raised on the same diet:

    labs(x = "", y = "Relative frequency") +
    theme_bw() +
    theme(text = element_text(size = 20))
# Beta distribution
g3 <- ggplot(data = data.frame(x = rbeta(1000, shape1 = 8, shape2 = 1)), 
             aes(x = x, y = after_stat(density))) +
    geom_histogram(color="black", fill = 'white', bins = 20) +
    geom_density() +
    geom_vline(aes(xintercept = mean(x)), col = 'orange') +
    geom_vline(aes(xintercept = median(x)), col = 'blue', 
               linetype = 'longdash') +
    labs(x = "", y = "Relative frequency") +
    theme_bw() +
    theme(text = element_text(size = 20))

In [10]: # orange solid: mean
# blue dashed: median
library(patchwork)
options(repr.plot.width=20, repr.plot.height=5)
g1 + g2 + g3

~y

n

n



11 13 19 2 10 1

Suppose the sample contained one more lamb, with 2-week weight gains (lb) being 10.

A more formal way to define the median is in terms of rank position in the ordered array

(counting the smallest observation as rank 1, the next as 2, and so on). The rank position of

the median is equal to . Note that the formula  does not give the

median, it gives the location of the median within the ordered list of the data.

Mean 

The most familiar measure of center is the ordinary average or mean (sometimes called

the arithmetic mean).

The mean of a sample (or "the sample mean") is the sum of the observations divided by

the number of observations.

The general definition of the sample mean is , where the  are the

observations in the sample and  is the sample size.

Example: weight gain of lambs

The following are the 2-week weight gains (lb) of six young lambs of the same breed

that had been raised on the same diet:

11 13 19 2 10 1

Robustness

A statistic is said to be robust if the value of the statistic is relatively unaffected by changes

in a small portion of the data, even if the changes are dramatic ones.

Recall that for the lamb weight-gain data,

if the observation 19 is changed 14, the mean becomes 8.5 and the median does not

change;

if the observation 19 is changed 29, the mean becomes 11 and the median does not

change.

Median v.s mean

While the median divides the data into two equal pieces (i.e., the same number of

observations above and below), the mean is the "point of balance" of the data.

The median is more robust than the mean.

An advantage of the mean is that in some circumstances it is more efficient than the

median. Partly because of its efficiency, the mean has played a major role in classical

methods in statistics.

(0.5)(n + 1) (0.5)(n + 1)

ȳ

ȳ = ∑
n

i=1 yi
1
n yi

n



If the frequency distribution is symmetric, the mean and the median are equal and fall in

the center of the distribution. If the frequency distribution is skewed, both measures are

pulled toward the longer tail, but the mean is usually pulled farther than the median.

Boxplots

One of the most efficient graphics, both for examining a single distribution and for making

comparisons between distributions, is known as a boxplot.

Quartile and the interquartile range

The median of a distribution splits the distribution into two parts, a lower part and an

upper part. The quartiles of a distribution divide each of these parts in half, thereby

dividing the distribution into four quarters.

The minimum, the maximum, the median, and the quartiles, taken together, are referred

to as the five-number summary of the data.

Example: blood pressure

The systolic blood pressures (mm Hg) of seven middle-aged men were as follows:

151 124 132 170 146 124 113

Suppose one more observation 130 is added in the sample.

Interquartile range



The interquartile range is the difference between the first and third quartiles and is

abbreviated as IQR, which measures the spread of the middle 50\% of the distribution.

Recall that for the blood pressure data,  and . It follows that

.

Outliers

Sometimes a data point differs so much from the rest of the data that it doesn't seem to

belong with the other data. Such a point is called an outlier.

An outlier might occur because of a recording error or typographical error when the

data are recorded, because of an equipment failure during an experiment, or for many

other reasons.

To given a definition of outlier, we first discuss what are known as fences.

The lower fence of a distribution is

The upper fence of a distribution is

An outlier is a data point that falls outside of the fences. That is, if

or

then we call the point an outlier.

Recall that for the blood pressure data, , , and . It follows

that the lower fence is  and the upper fence is

. Any point less than  or greater than  would be an

outlier. There is thus no outliers in this data set.

Example: radish growth in light

A common biology experiment involves growing radish seedlings under various conditions.

In one experiment students grew 14 radish seedlings in constant light. The observations, in

order, are

IQR = Q3 − Q1

Q1 = 124 Q3 = 151

IQR = 151 − 124 = 27

lower fence = Q1 − 1.5 × IQR

upper fence = Q3 + 1.5 × IQR

data point < Q1 − 1.5 × IQR

data point > Q3 + 1.5 × IQR

Q1 = 124 Q3 = 151 IQR = 27

124 − 1.5 × 27 = 83.5

151 + 1.5 × 27 = 191.5 83.5 191.5



Boxplots for data with no outliers

A boxplot is a visual representation of the five-number summary.

The boxplot of blood pressure data is

Boxplots for data with outliers

If there are outliers in the lower or upper part of the distribution, we identify them with dots

and extend a whisker from  down to the smallest observation that is not an outlier or from

 up to the largest data point that is not an outlier.

Q1

Q3



How to read boxplots?

Spread: The length of the box and the whiskers provides information about the spread

or variability of the data. A longer box and longer whiskers indicate greater variability,

while a shorter box and shorter whiskers indicate less variability.

Outliers: Any data points plotted beyond the whiskers are considered outliers and may

be worth further investigation as they deviate significantly from the rest of the dataset.

Skewness: The position of the median within the box can indicate the skewness of the

distribution. If the median is closer to the upper quartile, the distribution is left-skewed,

while if it is closer to the lower quartile, the distribution is right-skewed.



Percentiles and quantiles

The percentile is a data value where a certain percentage of observations fall below

that data value. The th percentile of a sample is the value below which  percent of the

individuals lie.

The same information in a percentile is sometimes represented as a quantile. This only

means that the proportion less than or equal to the given value is represented as a

decimal rather than as a percentage.

Median: th percentile

First quartile: th percentile

Third quartile: th percentile

Minimum: th percentile

Maximum: th percentile

th percentile:  quantile

Relationship between Variables

Categorical-categorical relationships

Suppose we are studying the relationship between the diet (plant-based or animal-based)

and the occurrence of a specific health condition (e.g., high blood pressure) among a group

of individuals.

bivariate frequency table

Diet Type Health Condition: Yes Health Condition: No

Plant-based 20 35

Animal-based 45 30

stacked bar charts

stacked relative frequency (or percentage) bar charts

q q

50

25

75

0

100

10 0.10



In [3]: # Create a data frame with the bivariate frequency table data
data <- data.frame(
    Diet_Type = c("Plant-based", "Plant-based", "Animal-based", 
                  "Animal-based"),
    Health_Condition = c("Yes", "No", "Yes", "No"),
    Frequency = c(20, 35, 45, 30)
)

# Create the stacked bar chart
g <- ggplot(data, aes(x = Diet_Type, y = Frequency, 
                      fill = Health_Condition)) +
    geom_bar(stat = "identity") +
    labs(x = "Diet type", y = "Frequency", fill = "Health condition") +
    theme_bw() +
    theme(text = element_text(size = 20))
options(repr.plot.width=10, repr.plot.height=5)
g

In [4]: # Calculate relative frequencies within each diet type
data <- transform(data, Relative_Frequency = Frequency / 
                  tapply(Frequency, Diet_Type, sum)[Diet_Type])

# Create the stacked relative frequency bar chart
g <- ggplot(data, aes(x = Diet_Type, y = Relative_Frequency, 
                      fill = Health_Condition)) +
    geom_bar(stat = "identity") +
    labs(x = "Diet type", y = "Relative frequency", 
         fill = "Health condition") +
    theme_bw() +
    theme(text = element_text(size = 20))
options(repr.plot.width=10, repr.plot.height=5)
g



Numeric-categorical relationships

Side-by-side boxplots of radish growth under three conditions: constant darkness, half

light–half darkness, and constant light.

Numeric-numeric relationships



scatterplot

Measures of Dispersion

We have considered the shapes and centers of distributions, but a good description of

a distribution should also characterize how spread out the distribution is; are the

observations in the sample all nearly equal, or do they differ substantially?

We defined the interquartile range (IQR) in previous section, which is one measure of

dispersion. Here we consider other measures of dispersion: the range and the standard

deviation.

The range

The sample range is the difference between the largest and smallest observations in a

sample.

Recall the blood pressure data: The systolic blood pressures (mm Hg) of seven middle-aged

men were as follows:

151 124 132 170 146 124 113

The range is easy to calculate, but it is very sensitive to extreme values; that is, it is not

robust.

Unlike the range, the IQR is robust.

In [16]: library(MASS)

g <- ggplot(data = Cars93, aes(x = Weight, y = MPG.city)) +
    geom_point() +
    labs(title = "Scatterplot of Weight of Car vs City MPG",
             x = "Weight of car (in pounds)",
             y = "City miles per gallon")+
    theme_bw() +
    theme(text = element_text(size = 20))
options(repr.plot.width=8, repr.plot.height=4)
g



The standard deviation

The standard deviation is the classical and most widely used measure of dispersion. The

sample standard deviation is denoted by  and is defined by the following formula:

Here  is called the deviation between observation , and the sample mean and

 denotes the sum of the squared deviations.

The sample variance, denoted by , is simply the standard deviation squared:

We will frequently abbreviate "standard deviation" as "SD"; the symbol "s" will be used in

formulas.

Example: chrysanthemum growth

In an experiment on chrysanthemums, a botanist measured the stem elongation (mm in 7

days) of five plants grown on the same greenhouse bench. The results were as follows:

76 72 65 70 82

Observation Deviation Squared deviation

76

72

65

70

82

Sum

Interpretation of the definition of 

If the chrysanthemum growth data are

75 72 73 75 70

then the mean is the same (y = 73 mm), but the SD is smaller (s = 2.1 mm), because the

observations lie closer to the mean.

s

s =



⎷

n

∑
i=1

(yi − ȳ)2.
1

n − 1

yi − ȳ yi

∑
n

i=1(yi − ȳ)2

s2

variance = s2 or s = variance.

s



Why ?

Note that the sum of the deviations  is always zero. Thus, once the first 

deviations have been calculated, the last deviation is constrained. This means that in a

sample with n observations, there are only  units of information concerning deviation

from the average. The quantity  is called the degrees of freedom of the standard

deviation or variance.

Consider the extreme case when  and  with .

The Empirical Rule

For "nicely shaped" distributions; that is, unimodal distributions that are not too skewed and

whose tails are not overly long or short, we usually expect to find

about 68% of the observations within  SD of the mean.

about 95% of the observations within  SDs of the mean.

>99% of the observations within  SDs of the mean.

n − 1

yi − y n − 1

n − 1

n − 1

n = 1 n = 2 y1 = y2

±1

±2

±3

In [13]: # Generate x values for the density plot
x <- seq(-4, 4, by = 0.01)

# Calculate the density values for the standard normal distribution
density <- dnorm(x)

# Create a data frame with x and density values
data <- data.frame(x = x, density = density)

# Create the plot using ggplot2
g <- ggplot(data, aes(x = x, y = density)) +
    geom_line() +
    labs(x = "x", y = "Density", title = "Standard Normal Distribution") +
    geom_vline(xintercept = c(-1, 1), col = "red", linetype = "dashed") +
    geom_vline(xintercept = c(-2, 2), col = "blue", linetype = "dashed") +
    geom_vline(xintercept = c(-3, 3), col = "green", linetype = "dashed") +
    scale_x_continuous(breaks = seq(-4, 4, by = 1)) +
    scale_y_continuous(limits = c(0, 0.45)) +
    theme_bw() +
    theme(text = element_text(size = 20))



Robustness: IQR > SD > range

In this course, we will rely primarily on the mean and SD rather than other descriptive

measures.

Effect of Transformation of Variables

For example, we might convert from inches to centimeters or from °F to °C. Transformation,

or reexpression, of a variable  means replacing  by a new variable, say .

Linear transformations

For linear transformations, a graph of  against  would be a straight line. A familiar

reason for linear transformation is a change in the scale of measurement.

Multiplicative transformations: Suppose  represents the weight of an animal in kg, and

we decide to reexpress the weight in lb. Then

so

Additive and multiplicative transformations:

In [14]: options(repr.plot.width=10, repr.plot.height=5)
g

Y Y Y ′

Y Y ′

Y

Y = Weight in kg

Y ′ = Weight in lb

Y ′ = 2.2Y

Y = Temperature in °C

Y ′ = Temperature in °F



then

A linear transformation consists of (1) multiplying all the observations by a constant, or (2)

adding a constant to all the observations, or (3) both.

Under a linear transformation ,

Nonlinear transformations

Data are sometimes reexpressed in a nonlinear way. Examples of nonlinear transformations

are

The logarithmic transformation is especially common in biology because many

important relationships can be simply expressed in terms of logs. For instance, there is

a phase in the growth of a bacterial colony when log(colony size) increases at a

constant rate with time.

If a distribution is skewed to the right, we may wish to apply a transformation that

makes the distribution more symmetric, by pulling in the right-hand tail. Using

 will pull in the right-hand tail of a distribution and push out the left-hand tail.

The transformation  is more severe than  in this regard.

Y ′ = 1.8Y + 32

Y ′ = aY + b

ȳ ′ = aȳ + b
~y ′ = a~y + b

s′ = as

IQR′ = aIQR

Y ′ = √Y

Y ′ = log Y

Y ′ = 1
Y

Y ′ = Y 2

Y ′ = √Y

Y ′ = log Y √Y



Statistical Inference

The process of drawing conclusions about a population, based on observations in a sample

from that population, is called statistical inference.

Example: blood types

In an early study of the ABO blood-typing system, researchers determined blood types of

3,696 persons in England.

Blood type Frequency

A 1,634

B 327

AB 119

O 1,616

Total 3,696

These data were not collected for the purpose of learning about the blood types of those

particular 3,696 people. Rather, they were collected for their scientific value as a source of

information about the distribution of blood types in a larger population. For instance, one

might presume that the blood type distribution of all English people should resemble the

distribution for these 3,696 people. In particular, the observed relative frequency of type A

blood was



One might conclude from this that approximately 44% of the people in England have type A

blood.

In making a statistical inference, we hope that

the sample is representative of the population.

the sample size cannot be too small.

Describing a population

Just as each sample has a distribution, a mean, and an SD, so also we can envision a

population distribution, a population mean, and a population SD.

In statistical language, we say that the sample characteristic is an estimate of the

corresponding population characteristic.

A sample characteristic is called a statistic; a population characteristic is called a

parameter.

Proportions

For a categorical variable, we can describe a population by simply stating the proportion, or

relative frequency, of the population in each category. The sample proportion of a category

is an estimate of the corresponding population proportion.

The symbol "^" can be interpreted as "estimate of". Thus,

Mean and SD

 or 44% type A
1634

3696

p =  Population proportion

p̂ =  Sample proportion

p̂  is an estimate of p



If the observed variable is quantitative, one can consider descriptive measures such as the

mean, the SD, the median, the quartiles and so on. Each of these quantities can be

computed for a sample of data, and each is an estimate of its corresponding population

analog.

The population mean is denoted by  (mu), and the population SD is denoted by  (sigma).

We may define these as follows for a quantitative variable :

Measure Sample value (statistics) Population value (parameter)

Proportion

Mean

Standard deviation

μ σ

Y

μ =  Population average value of Y

σ =√Population average value of (Y − μ)2

p̂ p

ȳ μ

s σ


