
Probability and the Binomial Distribution

Introduction to Probability

A probability is a numerical quantity that expresses the likelihood of an event. The

probability of an event  is written as . The probability  is always a number

between  and , inclusive.

Example: coin tossing

Consider the familiar chance operation of tossing a coin, and define the event : Heads.

Each time the coin is tossed, either it falls heads or it does not. If the coin is equally likely to

fall heads or tails, then

Such an ideal coin is called a "fair" coin. If the coin is not fair (perhaps because it is slightly

bent), then  will be some value other than , for instance, .

Example: sampling Fruitflies

A large population of the fruitfly Drosophila melanogaster is maintained in a lab. In the

population,  of the individuals are black because of a mutation, while  of the

individuals have the normal gray body color. Suppose one fly is chosen at random from the

population. Then the probability that a black fly is chosen is . More formally, define :

Sampled fly is black. Then .

The preceding example illustrates the basic relationship between probability and random

sampling: The probability that a randomly chosen individual has a certain characteristic is

equal to the proportion of population members with the characteristic.

Frequency interpretation of probability

The probability of an event E is meaningful only in relation to a chance operation that

can in principle be repeated indefinitely often.

Each time the chance operation is repeated, the event E either occurs or does not

occur.

The probability  is interpreted as the relative frequency of occurrence of E in an

indefinitely long series of repetitions of the chance operation.
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where the arrow indicates that if the chance operation is repeated an unlimited number

of times, the two sides of the expression will be approximately equal.

Recall the coin tossing example. Suppose that a fair coin is tossed and the number of heads

is recorded. One expects that

How about the probability of the event that both tosses are heads when this coin is tossed

twice?

Probability tree

What is the probability of the event that the first toss is head and the second toss is

tail?

What is the probability of the event that the first toss is tail?

Example: medical testing

Suppose a medical test is conducted on someone to try to determine whether or not the

person has a particular disease.
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Sensitivity:

Specificity:

Probability Rules

Rule (1) The probability of an event  is always between  and . That is,

.

Rule (2) The sum of the probabilities of all possible events equals 1. That is, if the set of

all possible disjoint events is , then .

Rule (3) The probability that an event  does not happen, denoted by , is one minus

the probability that the event happens. That is, . (We refer to 
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as the complement of .)

Example: blood types

In the United States,  of the population has type O blood,  has type A,  has

type B, and  has type AB. Consider choosing someone at random and determining the

person's blood type. The probability of a given blood type will correspond to the population

percentage.

The probability that the person will have type O blood .

.

The probability that the person will not have type O blood

. This could also be found by adding the probabilities of

the other blood types:

.

We say that two events are disjoint (mutually exclusive) if they cannot occur

simultaneously. Recall the blood types example.

The union ( ) of two events is the event that one or the other occurs or both occur.

The intersection ( ) of two events is the event that they both occur.

Addition rules

Rule (4) If two events  and  are disjoint, then

Rule (5) For any two events  and ,

Example: hair color and eye color

The following table shows the relationship between hair color and eye color for a group of

1,770 German men.
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= P(O) = 0.44

P(O) + P(A) + P(B) + P(AB) = 0.44 + 0.42 + 0.10 + 0.04 = 1

= P(OC) = 1 − 0.44 = 0.56

P(OC) = P(A) + P(B) + P(AB) = 0.42 + 0.10 + 0.04 = 0.56
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Calculate the probabilities of the following events:

black hair

blue eyes

black hair or red hair: rule (4)

black hair or blue eyes: rule (5)

Two events are said to be independent if knowing that one of them occurred does not

change the probability of the other one occurring.

For example, if a coin is tossed twice, the outcome of the second toss is independent of

the outcome of the first toss, since knowing whether the first toss resulted in heads or

in tails does not change the probability of getting heads on the second toss.

Events that are not independent are said to be dependent.

When events are dependent, we need to consider the conditional probability of one

event, given that the other event has happened. We use the notation  to

represent the probability of  happening, given that  happened.

Conditional probability

The conditional probability of , given , is

provided that .

Consider the hair color and eye color example, what is the probability of the man having

blue eyes given that he has black hair?

Multiplication rules

Rule (6) If two events  and  are independent, then

Rule (7) For any two events  and ,
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Recall the coin tossing example, use rule (6) to calculate the probability of getting

heads on both tosses.

Consider the hair color and eye color example, what is the probability of the man having

red hair and brown eyes?

Rules of total probability

Rule (8) For any two events  and ,

Consider the hair color and eye color example and two events : red hair, : brown eyes.

Verify rule (8).

Density Curves

The examples presented in the previous section dealt with probabilities for discrete

variables. In this section we will consider probability when the variable is continuous

Relative frequency histograms and density curves

A relative frequency histogram is a histogram in which we indicate the proportion (i.e.,

the relative frequency) of observations in each category, rather than the count of

observations in the category.

We can think of the relative frequency histogram as an approximation of the underlying

true population distribution from which the data came.

We may visualize the density curve as an idealization of a relative frequency histogram

with very narrow classes.

Example: blood glucose

A glucose tolerance test can be useful in diagnosing diabetes. The blood level of glucose is

measured one hour after the subject has drunk 50 mg of glucose dissolved in water. The

distribution is represented by histograms with class widths equal to (a) 10 and (b) 5, and by

(c) a smooth curve.
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A smooth curve representing a frequency distribution is called a density curve.

For any two numbers  and ,

If a variable has a continuous distribution, then we find probabilities by using the

density curve for the variable.

A probability for a continuous variable equals the area under the density curve for the

variable between two points.

Example: tree diameters

The diameter of a tree trunk is an important variable in forestry. The density curve shown

below represents the distribution of diameters (measured at breast height) in a population

of 30-year-old Douglas fir trees; areas under the curve are shown, as well. Consider the

diameter, in inches, of a randomly chosen tree. Then, for example,

.

?

How about the probability that a randomly chosen tree has a diameter greater than 8

inches?

a b

Area under density curve between a and b = Proportion of Y  values between a and b

P(4 < diameter < 6) = 0.33

P(4 ≤ diameter ≤ 6)



Random Variables

A random variable is simply a variable that takes on numerical values that depend on the

outcome of a chance operation.

Example: dice

Consider the chance operation of tossing a die. Let the random variable  represent the

number of spots showing. The possible values of  are , or . We do not

know the value of  until we have tossed the die. If the die is perfectly balanced so that

each of the six faces is equally likely, then

for .

Example: family size

Suppose a family is chosen at random from a certain population, and let the random variable

 denote the number of children in the chosen family. The possible values of  are

. The probability that  has a particular value is equal to the percentage of

families with that many children. For instance, if  of the families have  children, then

Example: heights of men

Let the random variable  denote the height of a man chosen at random from a certain

population. If we know the distribution of heights in the population, then we can specify the

probability that  falls in a certain range. For instance, if  of the men are between 

and  inches tall, then
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Each of the variables in dice and family size examples is a discrete random variable,

because in each case we can list the possible values that the variable can take on.

In contrast, the variable in heights of men example, height, is a continuous random

variable: Height, at least in theory, can take on any of an infinite number of values in an

interval.

We use density curves (probability density functions) to model the distributions of

continuous random variables, such as blood glucose level or tree diameter.

For discrete random variables, the counterpart of probability density functions (pdf) are

probability mass functions (pmf), which gives the probability that a discrete random

variable is exactly equal to some value. For example, in dice example the pmf is

 for .

Mean and variation of a random variable

For the case of a discrete random variable, we can calculate the population mean and

standard deviation if we know the probability mass function for the random variable.

The mean (expected value) of a discrete random variable  is defined as

where the  are the values that the variable takes on and the sum is taken over all

possible values.

The variance of a discrete random variable  is defined as

where the  are the values that the variable takes on and the sum is taken over all

possible values.

Calculate the mean ( ), variance( ), and stand deviation of the discrete random

variable defined in the dice example.

Rules for means of random variables

Rule (1) If  and  are two random variables, then

Rule (2) If  is a random variable and  and  constants, then

Rules for Variances of Random Variables

Rule (3) If  is a random variable and  and  constants, then

P(Y = i) = 1/6 i = 1, 2, 3, 4, 5, 6

Y
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yi
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yi
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μX+Y = μX + μY , μX−Y = μX − μY .

Y a b

μa+bY = a + bμY .
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Rule (4) If  and  are two independent random variables, then

If we add two random variables that are not independent of one another, then the variance

of the sum depends on the degree of dependence between the variables. To take an

extreme case, suppose that one of the random variables is the negative of the other.

The Binomial Distribution

Independent-Trials Model: A series of independent trials is conducted. Each trial results

in success or failure. The probability of success is equal to the same quantity, , for each

trial, regardless of the outcomes of the other trials.

A binomial random variable is a random variable that satisfies the following four

conditions, abbreviated as BInS:

Binary outcomes: There are two possible outcomes for each trial (success and failure).

Independent trials: The outcomes of the trials are independent of each other.

 is fixed: The number of trials, , is fixed in advance.

Same value of : The probability of a success on a single trial is the same for all trials.

Example: coin tossing

Suppose we have a fair coin and we flip it  times. We are interested in the number of

times we get heads (success) out of the  flips.

The binomial distribution comes into play because each flip of the coin is independent, and

there are only two possible outcomes (heads or tails) with a fixed probability of success (

for a fair coin).

In general, if the random variable  follows the binomial distribution with parameters 

and , we write . The probability of getting exactly  successes in 

independent Bernoulli trials is given by the probability mass function:

where:
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Consider the coin tossing example, let  be the number of heads out of the  flips. It

follows that . Using the above formula, the probability of getting exactly 

heads out of the  flips is

Properties of binomial coefficients

Symmetry:

Using the complement to calculate probability

Sometimes calculating probability of the complement of an event can be easier than

calculating the probability of the event itself. We can use the probability of the complement

to find the probability of the event by subtracting it from one. This trick is often used when

calculating the probability of multiple events.

What is the probability of getting at most 9 heads out of  flips?

Mean and variance of a binomial

For a binomial random variable , we have

the mean is

the variance is

The Bernoulli distribution

The discrete probability distribution of a random variable which takes the value  with

probability  and the value  with probability .
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It can be thought of as a model for the set of possible outcomes of any single

experiment that asks a yes-no question. Such questions lead to outcomes that are

boolean-valued: a single bit whose value is success/yes/true/one with probability  and

failure/no/false/zero with probability .

It can be used to represent a (possibly biased) coin toss where  and  would represent

"heads" and "tails", respectively, and  would be the probability of the coin landing on

heads (or vice versa where  would represent tails and  would be the probability of

tails).

The Bernoulli distribution is a special case of the binomial distribution where a single

trial is conducted ( ).

Deriving the mean and variance of a binomial using Bernoulli
distribution

The binomial random variable  is the sum of  identical Bernoulli random

variables, each with expected value  and variance . In other words, if 

are identical (and independent) Bernoulli random variables with parameter , then

.

Example: blood types

In the United States,  of the population has Rh positive blood. Suppose we take a

random sample of  persons and count the number with Rh positive blood. The binomial

model can be applied here, since the BInS conditions are met: There is a binary outcome on

each trial (Rh positive or Rh negative blood), the trials are independent (due to the random

sampling),  is fixed at , and the same probability of Rh positive blood applies to each

person ( ).

Let  denote the number of persons, out of , with Rh positive blood. Calculate
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