Sampling Distributions

Basic Ideas

e An important goal of data analysis is to distinguish between features of the data that
reflect real biological facts and features that may reflect only chance effects.

e The random sampling model provides a framework for making this distinction: Chance
effects are regarded as sampling error. That is, discrepancy between the sample and
the population.

¢ |n this chapter we develop the theoretical background that will enable us to place
specific limits on the degree of sampling error to be expected in a study.

Sampling variability

e The variability among random samples from the same population is called sampling
variability.

e A probability distribution that characterizes some aspect of sampling variability is
termed a sampling distribution.

e We have to expect a certain amount of discrepancy between the sample and the
population due to the sampling error.

The meta-study

A meta-study consists of indefinitely many repetitions, or replications, of the same study. If
the study consists of drawing a random sample of size nn from some population, the
corresponding meta-study involves drawing repeated random samples of size n from the
same population.
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The Sample Mean

e The sample mean y can be used, not only as a description of the data in the sample,
but also as an estimate of the population mean p. It is natural to ask, "How close to p is
y?"

e We cannot answer this question for the mean y of a particular sample due to the
randomness of the sample. Regarding the sample mean as a random variable Y', the
question then becomes: "How close to p is Y likely to be?"

e To characterize such randomness, we resort to the sampling distribution of the
sample mean 17, the probability distribution that describes sampling variability in Y.

To visualize the sampling distribution of 17, imagine the meta-study as follows:

e Random samples of size n are repeatedly drawn from a fixed population with mean u
and standard deviation o; each sample has its own mean y.

e The variation of the ¢'s among the samples is specified by the sampling distribution of
Y.



Population Samples of size n Sampling distribution of Y

When we think of Y as a random variable, we need to be aware of two basic facts

e On average, the sample mean equals to the population mean. That is, the average of
the sampling distribution of Y is .

e As the sample size increases, the standard deviation of Y decreases. That is, for larger
samples, Y will tend to be closer to the population mean.

Theorem

— Theorem 5.2.1: The Sampling Distribution of Y

1. Mean The mean of the sampling distribution of Y is equal to the population
mean. In symbols,
My = K
2. Standard deviation The standard deviation of the sampling distribution of Y is

equal to the population standard deviation divided by the square root of the
sample size. In symbols,

0'17,—

S

3. Shape
(a) If the population distribution of Y is normal, then the sampling distribu-
tion of Y is normal, regardless of the sample size n.

(b) Central Limit Theorem If n is large, then the sampling distribution of Y
1s approximately normal, even if the population distribution of Y is not
normal.

e Consider the random sample Y7, ..., Y,,, drawn from a population with mean y and
standard deviation o. The sample mean is denoted as Y = % Z?Zl Y. Try to derive



Parts 1 and 2 of the above theorem.

¢ The Central Limit Theorem states that, no matter what distribution Y may have in the
population, if the sample size is large enough, then the sampling distribution of Y will
be approximately a normal distribution.
e |tis because of the Central Limit Theorem (and other similar theorems) that the normal
distribution plays such a central role in statistics.
e |tis natural to ask how "large" a sample size is required by the Central Limit Theorem.
= |f the shape is normal, any n will do.
m |f the shape is moderately nonnormal, a moderate n is adequate.
m |f the shape is highly nonnormal, then a rather large n will be required.

Example: weights of seeds

A large population of seeds of the princess bean Phaseotus vulgaris is to be sampled. The
weights of the seeds in the population follow a normal distribution with mean p = 500 mg
and standard deviation ¢ = 120 mg. Suppose now that a random sample of four seeds is to
be weighed, and let Y represent the mean weight of the four seeds. What is the sampling
distribution of Y2 N (500, 3600)

Dependence of sample size

e Larger n gives a smaller value of oy and consequently a smaller expected sampling
error if ¢ is used as an estimate of .

o |f the population distribution is not normal, then the shape of the sampling distribution
of Y depends on n, being more nearly normal for larger n.

¢ The mean of a larger sample is not necessarily closer to p than the mean of a smaller
sample, but it has a greater probability of being close. It is in this sense that a larger
sample provides more information about the population mean than a smaller sample.
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Populations, samples, and sampling distributions

It is important to distinguish clearly among three different distributions related to a

guantitative variable Y:

e the distribution of Y in the population;
e the distribution of Y in a sample of data, and
e the sampling distribution of Y.

Distribution Mean

Yin
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Y insample ¥

Y (in meta- MY
study) =K
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Standard
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Recall the weights of seeds example, the population mean and standard deviation are
p = 500 mg and o = 120 mg. Suppose we weigh a random sample of n = 25 seeds from

the population and obtain the data in the table below



Table 5.2.3 Weights of 25 princess bean seeds

Weight (mg)
343 755 431 480 516 469 694
659 441 562 597 502 612 549
348 469 545 728 416 536 581
433 583 570 334

e The population distribution of Y = weights is represented in (a)

e the sample meanis y = 526.1 mg and the sample standard deviation is s = 113.7 mg.
(b) shows a histogram of the data; this histogram represents the distribution of Y in the
sample.

e The sampling distribution of Y as shown in (c) is a theoretical distribution which relates,
not to the particular sample shown in the histogram, but rather to the meta-study of
infinitely repeated samples of size n = 25. The mean and standard deviation of the
sampling distribution are iy = 500 mg and oy = 120/\/% = 24 mg.
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Notice that the distributions in (a) and (b) are more or less similar; in fact, the distribution in
(b) is an estimate of the distribution in (a). By contrast, the distribution in (c) is much
narrower, because it represents a distribution of means rather than of individual
observations.



The Normal Approximation to the Binomial Distribution

e The binomial random variable X ~ B(n, p) is the sum of n identical Bernoulli random
variables, each with expected value p and variance p(1 — p). In other words, if

X1,...,X, areidentical (and independent) Bernoulli random variables with parameter
p, then X = X7 4+ --- + X,
e Think of X1,...,X,, as arandom sample. Then the sample mean p= % ZI’L:1 X, is

governed by the Central Limit Theorem.

Theorem

e If nislarge, then the binomial distribution of the probability of success, 15, can be
approximated by a normal distribution with mean = p and standard deviation

~ Vo=

e If nis large, then the binomial distribution of the number of successes, Y, can be
approximated by a normal distribution with mean = np and standard deviation

= 4/np(1 - p).

Example: normal approximation to binomial

We consider a binomial distribution with n = 50 and p = 0.3. (a) shows this binomial
distribution, using spikes to represent probabilities; superimposed is a normal curve with
mean = np = 15 and standard deviation = \/np(l — p) = 3.24. (b) shows the sampling

distribution of P; superimposed is a normal curve with mean = p = 0.3 and standard

deviation = /p(1 — p)/n = 0.0648.
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To illustrate the use of the normal approximation, let us find the probability that 50
independent trials result in at least 18 successes, i.e., P(Y > 18). The exact calculation
using the binomial formula is very tedious, which involves 50 — 18 + 1 = 33 terms (0.2178
). If instead the normal approximation is adopted, we only need to find the corresponding
area under the normal curve.
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The Z score that corresponds to 18 is

We find that the areais 1 — 0.8238 = 0.1762 using Z table.

The continuity correction

What would happen if we want to compute P(Y = 18) using the normal approximation,
the probability of 18 successes?
We think of "18" as covering the space from 17.5 to 18.5 and thus we consider the area
under the normal curve between 17.5 and 18.5.
Compute P(Y > 18) using the continuity correction.

m The Z score is

1515
*7 T30400

= From the Z table, we find that the area above 0.77is 1 — 0.7794 = 0.2206.
What about P(12 <Y < 18)and P(12 <Y < 18)?
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Summary of continuity correction

e If P(Y =n)use

P(n—05<Y <n+05).

e If P(Y > n)use

P(Y >n+0.5).

e If P(Y <mn)use



P(Y <n+0.5).
e If P(Y < n)use

P(Y <n—0.5).
e If P(Y > n)use

P(Y >n—0.5).

How large must n be?
The required n depends on the value of p.

e If p = 0.5, then the binomial distribution is symmetric and the normal approximation is
quite good even for n as small as 10.

e However, if p = 0.1, the binomial distribution for n = 10 is quite skewed and is poorly
fitted by a normal curve; for larger n the skewness is diminished and the normal
approximation is better.

e A simple rule of thumb is the following:

= The normal approximation to the binomial distribution is fairly good if both np and
n(1 — p) are at least equal to 5.



