
Sampling Distributions

Basic Ideas

An important goal of data analysis is to distinguish between features of the data that

reflect real biological facts and features that may reflect only chance effects.

The random sampling model provides a framework for making this distinction: Chance

effects are regarded as sampling error. That is, discrepancy between the sample and

the population.

In this chapter we develop the theoretical background that will enable us to place

specific limits on the degree of sampling error to be expected in a study.

Sampling variability

The variability among random samples from the same population is called sampling

variability.

A probability distribution that characterizes some aspect of sampling variability is

termed a sampling distribution.

We have to expect a certain amount of discrepancy between the sample and the

population due to the sampling error.

The meta-study

A meta-study consists of indefinitely many repetitions, or replications, of the same study. If

the study consists of drawing a random sample of size  from some population, the

corresponding meta-study involves drawing repeated random samples of size  from the

same population.
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The Sample Mean

The sample mean  can be used, not only as a description of the data in the sample,

but also as an estimate of the population mean . It is natural to ask, "How close to  is

?"

We cannot answer this question for the mean  of a particular sample due to the

randomness of the sample. Regarding the sample mean as a random variable , the

question then becomes: "How close to  is likely to be?"

To characterize such randomness, we resort to the sampling distribution of the

sample mean , the probability distribution that describes sampling variability in .

To visualize the sampling distribution of , imagine the meta-study as follows:

Random samples of size  are repeatedly drawn from a fixed population with mean 

and standard deviation ; each sample has its own mean .

The variation of the 's among the samples is specified by the sampling distribution of

.
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Ȳ

n μ

σ ȳ
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When we think of  as a random variable, we need to be aware of two basic facts

On average, the sample mean equals to the population mean. That is, the average of

the sampling distribution of  is .

As the sample size increases, the standard deviation of  decreases. That is, for larger

samples,  will tend to be closer to the population mean.

Theorem

Consider the random sample , drawn from a population with mean  and

standard deviation . The sample mean is denoted as . Try to derive
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Parts 1 and 2 of the above theorem.

The Central Limit Theorem states that, no matter what distribution  may have in the

population, if the sample size is large enough, then the sampling distribution of  will

be approximately a normal distribution.

It is because of the Central Limit Theorem (and other similar theorems) that the normal

distribution plays such a central role in statistics.

It is natural to ask how "large" a sample size is required by the Central Limit Theorem.

If the shape is normal, any n will do.

If the shape is moderately nonnormal, a moderate n is adequate.

If the shape is highly nonnormal, then a rather large n will be required.

Example: weights of seeds

A large population of seeds of the princess bean Phaseotus vulgaris is to be sampled. The

weights of the seeds in the population follow a normal distribution with mean  mg

and standard deviation  mg. Suppose now that a random sample of four seeds is to

be weighed, and let  represent the mean weight of the four seeds. What is the sampling

distribution of ? 

Dependence of sample size

Larger  gives a smaller value of  and consequently a smaller expected sampling

error if  is used as an estimate of .

If the population distribution is not normal, then the shape of the sampling distribution

of  depends on , being more nearly normal for larger .

The mean of a larger sample is not necessarily closer to  than the mean of a smaller

sample, but it has a greater probability of being close. It is in this sense that a larger

sample provides more information about the population mean than a smaller sample.
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Populations, samples, and sampling distributions

It is important to distinguish clearly among three different distributions related to a

quantitative variable :

the distribution of  in the population;

the distribution of  in a sample of data, and

the sampling distribution of .

Distribution Mean
Standard
deviation

 in
population

 in sample

 (in meta-
study)

Example

Recall the weights of seeds example, the population mean and standard deviation are

 mg and  mg. Suppose we weigh a random sample of  seeds from

the population and obtain the data in the table below
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The population distribution of  weights is represented in (a)

the sample mean is  mg and the sample standard deviation is  mg.

(b) shows a histogram of the data; this histogram represents the distribution of  in the

sample.

The sampling distribution of  as shown in (c) is a theoretical distribution which relates,

not to the particular sample shown in the histogram, but rather to the meta-study of

infinitely repeated samples of size . The mean and standard deviation of the

sampling distribution are  mg and  mg.

Notice that the distributions in (a) and (b) are more or less similar; in fact, the distribution in

(b) is an estimate of the distribution in (a). By contrast, the distribution in (c) is much

narrower, because it represents a distribution of means rather than of individual

observations.
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The Normal Approximation to the Binomial Distribution

The binomial random variable  is the sum of  identical Bernoulli random

variables, each with expected value  and variance . In other words, if

 are identical (and independent) Bernoulli random variables with parameter

, then .

Think of  as a random sample. Then the sample mean  is

governed by the Central Limit Theorem.

Theorem

If  is large, then the binomial distribution of the probability of success, , can be

approximated by a normal distribution with mean  and standard deviation

.

If  is large, then the binomial distribution of the number of successes, , can be

approximated by a normal distribution with mean  and standard deviation

.

Example: normal approximation to binomial

We consider a binomial distribution with  and . (a) shows this binomial

distribution, using spikes to represent probabilities; superimposed is a normal curve with

mean  and standard deviation . (b) shows the sampling

distribution of ; superimposed is a normal curve with mean  and standard

deviation .

To illustrate the use of the normal approximation, let us find the probability that 

independent trials result in at least  successes, i.e., . The exact calculation

using the binomial formula is very tedious, which involves  terms (

). If instead the normal approximation is adopted, we only need to find the corresponding

area under the normal curve.

X ∼ B(n, p) n

p p(1 − p)

X1, … , Xn

p X = X1 + ⋯ + Xn

X1, … , Xn P̂ = ∑n

i=1 Xi
1
n

n P̂

= p

= √p(1 − p)/n

n Y

= np

= √np(1 − p)

n = 50 p = 0.3

= np = 15 = √np(1 − p) = 3.24

P̂ = p = 0.3

= √p(1 − p)/n = 0.0648

50

18 P(Y ≥ 18)

50 − 18 + 1 = 33 0.2178



The Z score that corresponds to  is

We find that the area is  using Z table.

The continuity correction

What would happen if we want to compute  using the normal approximation,

the probability of 18 successes?

We think of " " as covering the space from  to  and thus we consider the area

under the normal curve between  and .

Compute  using the continuity correction.

The Z score is

From the Z table, we find that the area above  is .

What about  and ?

Summary of continuity correction

If  use

If  use

If  use

18

z = = 0.93.
18 − 15

3.2404

1 − 0.8238 = 0.1762

P(Y = 18)

18 17.5 18.5

17.5 18.5

P(Y ≥ 18)

z = = 0.77
17.5 − 15

3.2404

0.77 1 − 0.7794 = 0.2206

P(12 ≤ Y ≤ 18) P(12 < Y < 18)

P(Y = n)

P(n − 0.5 < Y < n + 0.5).

P(Y > n)

P(Y > n + 0.5).

P(Y ≤ n)



If  use

If  use

How large must  be?

The required  depends on the value of .

If , then the binomial distribution is symmetric and the normal approximation is

quite good even for  as small as .

However, if , the binomial distribution for  is quite skewed and is poorly

fitted by a normal curve; for larger  the skewness is diminished and the normal

approximation is better.

A simple rule of thumb is the following:

The normal approximation to the binomial distribution is fairly good if both  and

 are at least equal to .

P(Y < n + 0.5).

P(Y < n)

P(Y < n − 0.5).

P(Y ≥ n)

P(Y > n − 0.5).
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