
Confidence Intervals

In this chapter we undertake our first substantial adventure into statistical inference. Recall

that statistical inference is based on the random sampling model: We view our data as a

random sample from some population, and we use the information in the sample to infer

facts about the population.

Statistical estimation is a form of statistical inference. We will learn how to assess the

precision of the estimate.

In general, for a sample of observations on a quantitative variable , the sample mean and

SD are estimates of the population mean and SD:

Our goal is to estimate . We will see how to assess the reliability or precision of this

estimate, and how to plan a study large enough to attain a desired precision.

Example: butterfly wings

As part of a larger study of body composition, researchers captured  male Monarch

butterflies at Oceano Dunes State Park in California and measured wing area (in cm ). The

data are given in the following table

For these data, the mean and standard deviaation are  cm  and  cm .

Define the population mean and SD as follows:
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 the (population) mean wing area of male Monarch butterflies in the Oceano Dunes

region;

 the (population) SD of wing area of male Monarch butterflies in the Oceano Dunes

region.

It is natural to estimate  by the sample mean and  by the sample SD. Specifically,

 is an estimate of ;

 is an estimate of .

These estimates are subject to sampling error (not only measurement error). The task of

this chapter is to assess the reliability or precision of .

Standard Error of the Mean

The standard deviation of the sampling distribution of  is

The population standard deviation  is typically unknown. Since  is an estimate of , a

natural estimate of  would be

which is called the standard error of the mean.

For the butterfly wings example, the standard error of the mean is

Standard error  versus sample standard deviation 

The sample SD  describes the dispersion of the data, while the SE

describes the unreliability (due to sampling error) in the mean of the sample as an estimate

of the mean of the population.

Example: lamb birthweights

A geneticist weighed  female lambs at birth. The lambs were all born in April, were all the

same breed (Rambouillet), and were all single births (no twins). The diet and other
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environmental conditions were the same for all the parents. The birthweights are shown in

the following table.

For these data, the mean is  kg, the sample SD is  kg, and the SE is

 kg. The sample SD, , describes the variability of birthweights among the lambs

in the sample, while the SE indicates the variability associated with the sample mean (

kg), viewed as an estimate of the population mean birthweight.

This distinction is emphasized in the figure below, which shows a histogram of the lamb

birthweight data; the sample SD is indicated as a deviation from the sample mean , while

the SE is indicated as variability associated with  itself.

For very large , the sample mean and SD  and  would be very close to the

population mean and SD  and .

The SE, by contrast, tends to decrease as  increases; when  is very large, the SE is

very small and so the sample mean is a very precise estimate of the population mean.

ȳ = 5.17 s = 0.65

SE = 0.12 s

5.17

ȳ
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A matrix: 4 × 3 of type dbl

sample mean sample SD SE

-0.19 1.20 0.38

-0.04 1.09 0.11

-0.03 1.00 0.03

0.01 1.00 0.01

Graphical representation of the SE and the sample SD

In [56]: # generate random sample of various sizes from 
# standard normal distribution
res <- matrix(nrow = 4, ncol = 3)
colnames(res) <- c('sample mean', 'sample SD', 'SE')
y <- rnorm(10)
res[1, ] <- round(c(mean(y), sd(y), sd(y)/sqrt(10)), 2)
y <- rnorm(100)
res[2, ] <- round(c(mean(y), sd(y), sd(y)/sqrt(100)), 2)
y <- rnorm(1000)
res[3, ] <- round(c(mean(y), sd(y), sd(y)/sqrt(1000)), 2)
y <- rnorm(10000)
res[4, ] <- round(c(mean(y), sd(y), sd(y)/sqrt(10000)), 2)
res

In [52]: library(ggplot2)

f <- function(x) {
    c(mean(x), sd(x), sd(x)/sqrt(length(x)))
}
y <- aggregate(iris$Sepal.Length, list(iris$Species), FUN = f)
df <- data.frame(species = y[, 1])
df[, 2:4] <- as.data.frame(rbind(y[1, 2], y[2, 2], y[3, 2]))
names(df)[2:4] <- c('mean', 'sd', 'se')

g1 <- ggplot(df, aes(x = species, y = mean)) +
    geom_point(stat="identity", fill = 'skyblue') +
    geom_errorbar(aes(ymin = mean - sd, ymax = mean + sd), width = .2) +
    labs(title = "Interval plots of Sepal Length by Species", 
         x = "Species", y = "Sepal Length") +
    scale_y_continuous(limits = c(0, 8)) +
    theme_bw() +
    theme(text = element_text(size = 15))
g2 <- ggplot(df, aes(x = species, y = mean)) +
    geom_bar(stat="identity", fill = 'skyblue') +



Confidence Interval for 

The standard error of the mean (the SE) measures how far  is likely to be from the

population mean . In this section we make this idea precise.

    geom_errorbar(aes(ymin = mean - sd, ymax = mean + sd), width = .2) +
    labs(title = "Barplots of Sepal Length by Species", 
         x = "Species", y = "Sepal Length") +
    scale_y_continuous(limits = c(0, 8)) +
    theme_bw() +
    theme(text = element_text(size = 15))
g3 <- ggplot(df, aes(x = species, y = mean)) +
    geom_point(stat="identity", fill = 'skyblue') +
    geom_errorbar(aes(ymin = mean - se, ymax = mean + se), width = .2) +
    labs(title = "Interval plots of Sepal Length by Species", 
         x = "Species", y = "Sepal Length") +
    scale_y_continuous(limits = c(0, 8)) +
    theme_bw() +
    theme(text = element_text(size = 15))
g4 <- ggplot(df, aes(x = species, y = mean)) +
    geom_bar(stat="identity", fill = 'skyblue') +
    geom_errorbar(aes(ymin = mean - se, ymax = mean + se), width = .2) +
    labs(title = "Barplots of Sepal Length by Species", 
         x = "Species", y = "Sepal Length") +
    scale_y_continuous(limits = c(0, 8)) +
    theme_bw() +
    theme(text = element_text(size = 15))

In [53]: library(patchwork)
options(repr.plot.width=12, repr.plot.height=8)
(g1 + g2)/(g3 + g4)
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Parameter  denotes the population mean, which is fixed but unknown.

The sample mean  (random) is an estimate of , whose performance can be

evaluated by its sampling distribution.

A confidence interval for the population mean is a range of values within which we

expect the true population mean to fall with a certain level of confidence.

Recall that for , the probability that  is between  is about . More

precisely, .

From Chapter 5 we know that if the population  has a normal distribution, then the

sampling distribution of  is , so

Simplifying the above equation leads to

That is, the interval

will contain the population mean  for  of all samples.

The interval

cannot be used for data analysis since the population SD  is typically unknown.

If we replace  by its estimate , then we can calculate an interval from the data, but

what happens to the  interpretation?

It turns out that

where  denotes the Student's  distribution with degrees of freedom .

A  curve is symmetric and bell shaped like the normal curve but has a larger standard

deviation (heavier tail). As the  increases, the  curves approach the normal curve;

thus, the normal curve can be regarded as a  curve with infinite  ( ).
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The quantity  is referred to as "degrees of freedom" because the deviations

 must sum to zero, and so only  of them are "free" to vary. A sample of

size  provides only  independent pieces of information about variability, that is,

about .

By the symmetry of the Student's  distribution and the fact that

one has

The quantity  is called the "two-sided  critical value" of Student's 

distribution.

Critical values of Studentʼs  distribution are tabulated in  Table (Files --> Tables).

The values of  are shown in the row headed " " and the column

headed "Upper Tail Probability ."

 Table v.s. Z Table.

Simplifying the following equation
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The interval
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Ȳ − μ

s/√n

P(−tn−1(0.025) < < tn−1(0.025)) = 0.95.
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is called the (two-sided)  confidence interval (CI) for .

Generally, the two-sided  confidence interval for  is constructed using  as

follows:

Example: butterfly wings

For the butterfly data, we have ,  cm , and  cm . Find a

two-sided  confidence interval for the population mean .

.

According to the formula, the two-sided  confidence interval for  is

From  Table we find .

It follows that the two-sided  confidence interval for  is ; that is

.

The confidence statement asserts that the population mean wing area of male Monarch

butterflies in the Oceano Dunes region of California is between  cm  and  cm

with  confidence.

Find a two-sided  confidence interval for the population mean .

.

According to the formula, the two-sided  confidence interval for  is

From  Table we find .

It follows that the two-sided  confidence interval for  is ; that is

.

The confidence statement asserts that the population mean wing area of male Monarch

butterflies in the Oceano Dunes region of California is between  cm  and  cm

with  confidence.

The higher the confidence level, the wider the confidence interval (for a fixed sample

size; but note that as  increases the intervals tend to get smaller).

Interpretation of a confidence interval
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Consider, for instance, a  confidence interval. One way to interpret the confidence

level ( ) is to refer to the meta-study of repeated samples from the same

population.

If a  confidence interval for  is constructed for each sample, then  of the

confidence intervals will contain .

Of course, the observed data in an experiment comprise only one of the possible

samples; we can hope "confidently" that this sample is one of the lucky , but we

will never know.

Example: blue jay bill length

In a certain large population of Blue Jays, the distribution of bill lengths is normal with mean

 mm and standard deviation  mm. Figure below shows some typical

samples from this population; plotted on the right are the associated  confidence

intervals. The sample sizes are  and .

Notice that the second confidence interval does not contain .

In the totality of potential confidence intervals, the percentage that would contain  is

 for either sample size.

The larger samples tend to produce narrower confidence intervals.
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A confidence level can be interpreted as a probability, but caution is required. If we consider

 confidence intervals, for instance, then the following statement is correct:

However, one should realize that it is the confidence interval that is the random item in this

statement, and it is not correct to replace this item with its value from the data. Thus, for

instance, we found in the butterfly wings example that the  confidence interval for the

mean butterfly wings is

Nevertheless, it is not correct to say that

because this statement has no chance element; either  is between  and  or it is

not.

Example: bone mineral density

In an experiment to assess the effectiveness of hormone replacement therapy, researchers

gave conjugated equine estrogen (CEE) to a sample of  women between the ages of 

and . After taking the medication for  months, the bone mineral density was measured

for each of the  women. The average density was  g/cm , with a standard deviation

of  g/cm . Assume the bone mineral density is normally distributed.

A two-sided  confidence interval for  is

95%

P(the next sample will give us a confidence interval that contains μ) = 0.95.

95%
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P(31.4 cm2 < μ < 34.2 cm2) = 0.95.
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According to  Table,  (since  Table doesn't list 93 degrees of

freedom, we use 100 degrees of freedom).

It follows that the two-sided  confidence interval for  is .

Thus, we are  confident that the mean bone mineral density of all women age  to

 who take CEE for  months is between  g/cm  and  g/cm .

Relationship to sampling distribution of 

Notice that the particular confidence interval does contain ; this will happen for  of

samples.

One-sided confidence intervals

Most confidence intervals are of the form "estimate  margin of error"; these are

known as two-sided intervals.

However, it is possible to construct a one-sided confidence interval, which is

appropriate when only a lower bound, or only an upper bound, is of interest.

Upper one-sided confidence intervals

Simplifying the following equation

leads to

The interval
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Ȳ − μ

s/√n
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is called the upper one-sided  confidence interval for .

Lower one-sided confidence intervals

Simplifying the following equation

leads to

The interval

is called the lower one-sided  confidence interval for .

Example: seeds per fruit

The number of seeds per fruit for the freshwater plant Vallisneria americana varies

considerably from one fruit to another. A researcher took a random sample of  fruit and

found that the average number of seeds was , with a standard deviation of . The

researcher expected the number of seeds to follow, at least approximately, a normal

distribution.

It might be that we want a lower bound on , the population mean, but we are not

concerned with how large  might be --> Lower one-sided confidence intervals

For , the lower limit of the confidence interval is

The lower one-sided  confidence interval is thus  and we are 

confident that the (population) mean number of seeds per fruit for Vallisneria americana

is at least .

Planning a Study to Estimate 

Recall that as an estimate of the population mean ,  has the sampling distribution

with mean  and SD . The precision with which a population mean  can be

(−∞, Ȳ + tn−1(α) × )
s

√n

1 − α μ

P(−∞ < < tn−1(α)) = 1 − α
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estimated is thus determined by two factors: (1) the population variability of the

observed variable , and (2) the sample size.

Suppose that plans have been made to reduce the variability of  as much as possible,

or desirable. What sample size will be sufficient to achieve a desired degree of

precision in estimation of the population mean?

If we use the standard error as our measure of precision, then this question becomes:

What sample size will be sufficient to make the following inequality hold?

Example: butterfly wings

The butterfly wing data yielded the following summary statistics:

Suppose the researcher is now planning a new study of butterflies and has decided that it

would be desirable that the SE be no more than  cm . As a preliminary guess of the SD,

she will use the value from the old study, namely  cm . Thus, the desired sample size 

must satisfy the following relation:

This quation is easily solved to give . Since one cannot have  butterflies, the

new study should include at least  butterflies.

Suppose the researcher in previous example has decided that she would like to be able

to estimate the population mean, , to within  with  confidence.

That is, she would like her  confidence interval for  to be .

The "  part" of the confidence interval, which is called the margin of error for 

confidence, is denoted by . The precise value of 

depends on the degrees of freedom, but typically  is approximately .

Thus, the researcher wants  to be no more than . This means that the SE

should be no more than  cm .

Conditions for Validity of a Confidence Interval for 

If  follows a normal distribution in the population, then Student's  method is exactly

valid. That is to say, the probability that the confidence interval will contain  is actually

equal to the confidence level (e.g., ).

By the same token, this interpretation is approximately valid if the population

distribution is approximately normal.
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Even if the population distribution is not normal, the Student's  confidence interval is

approximately valid if the sample size is large.

From a practical point of view, the important question is: How large must the sample be

in order for the confidence interval to be approximately valid if the population is

nonnormal?

Not surprisingly, the answer to this question depends on the degree of nonnormality of

the population distribution: If the population is only moderately nonnormal, then  need

not be very large. Consider the following three population distributions: (1) normal, (2)

slightly skewed right, (3) heavily skewed right.

The table below shows the actual probability that a Student's  confidence interval will

contain  for samples from three different populations.
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In summary, Student's  method of constructing a confidence interval for m is appropriate if

the following conditions hold.

Conditions on the design of the study

It must be reasonable to regard the data as a random sample from a large

population.

The observations in the sample must be independent of each other.

Conditions on the form of the population distribution

If n is small, the population distribution must be approximately normal.

If n is large, the population distribution need not be approximately normal. In many

practical situations, moderate sample sizes (say, ) are large enough.

The requirement that the data are a random sample is the most important condition.

Comparing Two Means

In previous sections we have considered the analysis of a single sample of quantitative

data. In practice, however, much scientific research involves the comparison of two or

more samples from different populations. When the observed variable is quantitative,

the comparison of two samples can include several aspects, notably (1) comparison of

means, (2) comparison of standard deviations, and (3) comparison of shapes.

The notation for comparison of two samples is exactly parallel to our earlier notation,

but now a subscript (1 or 2) is used to differentiate between the two samples. The

parameter of interest is the difference between two population means .

Standard error of 

To compare two sample means, it is natural to consider the difference between them:

, which is an estimate of the quantity . To characterize the sampling

error of estimation, we need to be concerned with the standard error of the difference

.

Recall that  if  and  are independent. The

standard deviation of  is thus

Replacing the population SDs  and  with their estimates  and  yields the

standard error of :
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σȲ 1−Ȳ 2
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Ȳ 1 − Ȳ 2
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When we have two independent samples, we take the SE of each mean, square them,

add them, and then take the square root of the sum.

Example: vital capacity

Vital capacity is a measure of the amount of air that someone can exhale after taking a deep

breath. One might expect that musicians who play brass instruments would have greater

vital capacities, on average, than would other persons of the same age, sex, and height. In

one study the vital capacities of seven brass players were compared to the vital capacities

of five control subjects; the table below shows the data.

For the vital capacity data, preliminary computations yield the results in the following table.

The SE of  is

Note that

and the SE of the difference is greater than either of the individual SEs but less than their

sum.

Ȳ 1 − Ȳ 2

SEȲ 1−Ȳ 2
= √ + = 0.227.
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Confidence Intervals for 

One way to compare two sample means is to construct a confidence interval for the

difference in the population means. That is, a confidence interval for the quantity .

Recall that a  confidence interval for the mean  of a single population that is normally

distributed is constructed as

Analogously, a  confidence interval for  is constructed as

with the degrees of freedom

where  and .

Example: fast plant

The Wisconsin Fast Plant, Brassica campestris, has a very rapid growth cycle that makes it

particularly well suited for the study of factors that affect plant growth. In one such study,

seven plants were treated with the substance Ancymidol (ancy) and were compared to eight

control plants that were given ordinary water. Heights of all of the plants were measured, in

cm, after  days of growth. The data are given in the following table. Assume the plant

height is normally distributed. Find the  confidence interval for .

The SE for the difference in sample means is
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Using the formula, we find the degrees of freedom to be:

Using a computer, we can find that for a  confidence interval the  multiplier for 

degrees of freedom is . (Without a computer, we could round down the

degrees of freedom, in which case the  multiplier is . This change from

 to  degrees of freedom has little effect on the final answer.)

The confidence interval formula gives

or

The  confidence interval for  is

Thus, we are  confident that the population average 14-day height of fast plants when

water is used ( ) is between 0.42 cm lower and 10.22 cm higher than the average 14-day

height of fast plants when ancy is used ( ).

Summary of Estimation Methods

Standard error of the mean:

Confidence interval for :

The confidence interval formula is valid if (1) the data can be regarded as a random

sample from a large population, (2) the observations are independent, and (3) the

population is normal. If  is large then condition (3) is less important.

Standard error of :
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= √ + = 2.46.
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Confidence interval for :

with

The confidence interval formula is valid if (1) the data can be regarded as coming from

two independently chosen random samples, (2) the observations are independent

within each sample, and (3) each of the populations is normally distributed. If  and

 are large, condition (3) is less important.
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