
Categorical Data: One-Sample Distributions

In this chapter we study categorical data. We will

explore sampling distributions for estimators that describe dichotomous populations.

demonstrate how to make and interpret confidence intervals for proportions.

provide a method for finding an optimal sample size for estimating a proportion.

show how and when to conduct a chi-square goodness-of-fit test.

Dichotomous Observations

When sampling from a large dichotomous population, a natural estimate of the population

proportion, , is the sample proportion, , where  is the number of observations in

the sample with the attribute of interest and  is the sample size.

Example: contaminated soda

At any given time, soft-drink dispensers may harbor bacteria such as Chryseobacterium

meningosepticum that can cause illness. To estimate the proportion of contaminated soft-

drink dispensers in a community in Virginia, researchers randomly sampled 30 dispensers

and found 5 to be contaminated with Chryseobacterium meningosepticum. Thus the sample

proportion of contaminated dispensers is

The Wilson-adjusted sample proportion, 

The estimate, , given in the previous example is a good estimate of the

population proportion of contaminated soda dispensers, but it is not the only possible

estimate. The Wilson-adjusted sample proportion, , is another estimate of the population

proportion and is given by

The Wilson-adjusted sample proportion of contaminated dispensers is

The Wilson-adjusted sample proportion is equivalent to computing the ordinary sample

proportion  on an augmented sample: one that includes four extra observations of
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soft-drink dispensers with two that are contaminated and two that are not.

This augmentation has the effect of biasing the estimate towards the value .

Generally speaking we would like to avoid biased estimates, but as we shall see later,

confidence intervals based on this biased estimate, , actually are more reliable than

those based on .

The sampling distribution of 

For random sampling from a large dichotomous population, we saw in Chapter 3 how to use

the binomial distribution to calculate the probabilities of all the various possible sample

compositions. These probabilities in turn determine the sampling distribution of .

Example: contaminated soda

Suppose that in a certain region of the United States,  of all soft-drink dispensers are

contaminated with Chryseobacterium meningosepticum. If we were to examine a random

sample of two drink dispensers from this population of dispensers, then we will get either

zero, one, or two contaminated machines.

Example: contaminated soda and a larger sample

Suppose we were to examine a sample of 20 dispensers from a population in which  are

contaminated. How many contaminated dispensers might we expect to find in the sample?

However, since  is rather large, we will not list each possible sample. Rather, we will

make calculations using the binomial distribution with  and . For instance,

let us calculate the probability that 5 dispensers in the sample would be contaminated and

15 would not:

for . The population proportion  thus corresponds to the second

parameter of a binomial distribution . The sampling distribution of  is
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for  and .

Confidence Interval for a Population Proportion

In Chapter 6 we described confidence intervals when the observed variable is quantitative.

Similar ideas can be used to construct confidence intervals in situations in which the

variable is categorical and the parameter of interest is a population proportion.

Consider a random sample of  categorical observations, and let us fix attention on one

of the categories.

For instance, suppose a geneticist observes  guinea pigs whose coat color can be

either black, sepia, cream, or albino; let us fix attention on the category "black."

Let  denote the population proportion of the category of interest, and let  denote the

Wilson-adjusted sample proportion, which is our estimate of .

When the sample size, , is large, the sampling distribution of  is approximately normal

(recall the normal approximation to the binomial distribution); this approximation is related

to the Central Limit Theorem.

Standard error of 

The standard error of the estimate is found using the following formula.

This formula for the standard error of the estimate looks similar to the formula for the

standard error of a mean, but with  playing the role of  and with  in place

of .

Example: smoking during pregnancy

In the Pregnancy Risk Assessment Monitoring System survey, 999 women who had given

birth were asked about their smoking habits. Smoking during the last 3 months of
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pregnancy was reported by 125 of those sampled. Thus,  is

the standard error is

 confidence interval for 

Once we have the standard error of , we need to know how likely it is that  will be

close to . The general process of constructing a confidence interval for a proportion is

similar to that used in Chapter 6 to construct a confidence interval for a mean.

When constructing a confidence interval for a mean, we multiplied the standard error by

a  multiplier since

The sampling distribution of  is approximately normal if the sample size, , is large.

That is

It turns out that even for moderate or small samples, intervals based on  and 

multipliers do a very good job of estimating the population proportion, .

For a  confidence interval, the appropriate  multiplier is . The

approximate  confidence interval for a population proportion  is thus

For the smoking example, a  confidence interval for  is

or . Thus, we are  confident that the proportion of smoking during the

last 3 months of pregnancy is between 0.105 and 0.149 (i.e., between  and ).

Conditions for use of the Wilson  confidence interval for 

In order for the Wilson confidence interval to be applicable, it must be reasonable to

regard the data as a random sample from some population.

In particular, it is important that the observations are chosen independently and that

all items in the population have the same chance of being sampled.
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The Wilson interval does not require large sample sizes to be valid.

One-sided confidence intervals

Similar to Chapter 6, to construct a one-sided confidence interval, we replace the multiplier

 by . Since the population proportion  is always between  and  and ,

the upper one-side  confidence interval for  is

and the lower one-sided  confidence interval for  is

Example: ECMO

Extracorporeal membrane oxygenation (ECMO) is a potentially life-saving procedure that is

used to treat newborn babies who suffer from severe respiratory failure. An experiment was

conducted in which 11 babies were treated with ECMO; none of the 11 babies died. Let 

denote the probability of death for a baby treated with ECMO. The fact that none of the

babies in the experiment died should not lead us to believe that the probability of death, ,

is precisely zero; only that it is close to zero. The estimate given by  is . The

standard error of  is

Thus, a  two-sided confidence interval for  is

or . We know that  cannot be negative, so we state the confidence interval

as . Thus, we are  confident that the probability of death in a newborn with

severe respiratory failure who is treated with ECMO is between 0 and 0.305 (i.e., between

 and ).

A upper one-sided  confidence interval for  is

or . That is, we are  confident that the probability of death is at most .

 confidence interval for 

In order to construct intervals with other confidence coefficients, some modifications to the

procedure are needed. In general, for a  confidence interval, the sample proportion 

is defined as
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while the standard error is given by

where  denotes the  percentile of the standard normal distribution and

can be found in  Table at  (Recall from Chapter 6 that the  distribution with

 is a standard normal distribution).

For a  confidence interval, , so

which we round off as

Similar arguments apply to the standard error for a  confidence interval.

In general, the  confidence interval for  is

the upper one-side  confidence interval for  is

and the lower one-sided  confidence interval for  is

where

Vegetarians

In a survey of 136 students at a U.S. college, 19 of them said that they were vegetarians. Let

us construct a  confidence interval for the proportion, , of vegetarians in the

population. The sample estimate of the proportion is

~p =
Y + 0.5 × z2

α/2

n + z2
α/2

SE~p =



⎷

,
~p(1 − ~p)

n + z2
α/2

zα/2 100(1 − α/2)

t df = ∞ t

df = ∞

95% zα/2 = z0.025 = 1.96

~p = = ,
Y + 0.5 × 1.962

n + 1.962

Y + 1.92

n + 3.84

.
Y + 2

n + 4

95%

1 − α p

~p ± zα/2 × SE~p ,

1 − α p

(0, ~p + zα × SE~p ),

1 − α p

(~p − zα × SE~p , 1),

~p = , SE~p =


⎷

.
Y + 0.5 × z2

α/2

n + z2
α/2

~p(1 − ~p)

n + z2
α/2

90% p



and the standard error is

A  confidence interval for  is

or . Thus, we are  confident that between  and  of the

population that was sampled are vegetarians.

Inference for Proportions: The Chi-square Goodness-
of-Fit Test

We described methods for constructing confidence intervals when the observed variable is

categorical. We now turn our attention to hypothesis testing for categorical data. We

assume that the data can be regarded as a random sample from some population and we

will test a null hypothesis,  , that specifies the population proportions, or probabilities, of

the various categories.

Example: deer habitat and fire

Does fire affect deer behavior? Six months after a fire burned 730 acres of homogenous

deer habitat, researchers surveyed a 3,000-acre parcel surrounding the area, which they

divided into four regions: the region near the heat of the burn (1), the inside edge of the

burn (2), the outside edge of the burn (3), and the area outside of the burned area (4); see

the figure and table below. The null hypothesis is that that deer show no preference to any

particular type of burned/unburned habitat (they are randomly distributed over the 3,000

acres). The alternative hypothesis is that the deer do show a preference for some of the

regions (they are not randomly distributed across all 3,000 acres). Under the null

hypothesis, if deer were randomly distributed over the 3,000 acres, then we would expect

the counts of deer in the regions to be in proportion to the sizes of the regions.
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Given a random sample of n categorical observations, how can one judge whether they

provide evidence against a null hypothesis  that specifies the probabilities of the

categories? One approach is to examine the observed frequencies and compared with the

expected frequencies.

Researchers observed a total of 75 deer in the 3,000-acre parcel: Two were in the region

near the heat of the burn (Region 1), 12 were on the inside edge of the burn (Region 2), 18

were on the outside edge of the burn (Region 3), and 43 were outside of the burned area

(Region 4).

The null and alternative hypotheses are

The chi-square test statistic

The goodness-of-fit test is used to assess the compatibility of the data with  that

specifies the population proportions, or probabilities, of the various categories. The

most widely used goodness-of-fit test is the chi-square test or  test (  is the Greek

letter "chi").

For each category , let  represent the observed frequency of the category and let 

represent the expected frequency (the frequency that would be expected according to

).
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H0 :P(inner burn) = 0.173, P(inner edge) = 0.070,

P(outer edge) = 0.080, P(outer unburned) = 0.677.

HA :  At least two of the hypothesized proportions differ from the null.
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The chi-square test statistic is

where the summation is over all  categories.

Consider the deer habitat and fire example, if the null hypothesis is true, then we expect

 of the 75 deer to be in the inner burn region;  of 75 is 13.0: . The

corresponding expected frequencies for the other regions are

.

The  test statistic is

The  distribution

From the way in which  is defined, it is clear that small values of  would indicate that the

data agree with , while large values of  would indicate disagreement. To make this idea

precise, we need to know the distribution of the test statistic under the null hypothesis .

It can be shown (using the methods of mathematical statistics) that, if the sample size is

large enough (  for all ), then the null distribution of  can be approximated by a

distribution known as a  distribution. The form of a  distribution depends on a

parameter called "degrees of freedom" ( ).
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 Table gives critical values for the  distribution. For instance, for , the  critical

value is . This critical value corresponds to an area of 0.05 in the upper

tail of the  distribution, as shown in the above figure.

The goodness-of-fit test

For the chi-square goodness-of-fit test, the null distribution of  is approximately a 

distribution with , where  equals the number of categories. Specifically,

For example, for the setting presented in deer habitat and fire example there are four

categories so . The null hypothesis specifies the probabilities for each of the four

categories. However, once the first three probabilities are specified, the last one is

determined, since the four probabilities must sum to 1. There are four categories, but only

three of them are "free"; the last one is constrained by the first three.

 is rejected at the  level of significance if

For the deer habitat and fire example, the observed  test statistic was . Because

there are four categories, the degrees of freedom for the null distribution are calculated as

. From  Table with  we find that . Since

 is greater than 21.11, the upper tail area beyond 43.2 is less than 0.0001.Thus the

-value is less that 0.0001 and we have strong evidence against  and in favor of the

alternative hypothesis that the deer show preference for some areas over others.

Summary of Inference Methods for Categorical Data
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where

General confidence interval for :

where

Goodness-of-fit test:

 specifies the probability of each category

: At least two of the hypothesized proportions differ from the null

Data:  the observed frequency of category 

Calculation of expected frequencies:  probability specified for category 

by 

Test statistic:
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