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▶ Samples of random objects (non-Euclidean data) that take values in a
metric space are becoming increasingly prevalent.

▶ Due to the absence of a vector space structure, basic statistical tools
for scalar/vector data are no longer applicable.

▶ Examples of random objects:
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Figure 1: Left: Age-at-death densities of 162 countries in 2015. Right: Taxi
traffic network on Jan 1, 2017 in Manhattan.

1 / 27



Motivation

▶ Modeling the relationship between metric space-valued responses and
moderate to high-dimensional Euclidean predictors nonparametrically.

▶ Two primary challenges:
▶ Curse of dimensionality in nonparametric regression.
▶ Absence of linear structure in general metric spaces.

2 / 27



Petersen, A., & Müller, H. G. (2019). Fréchet regression for random
objects with Euclidean predictors. Annals of Statistics, 47(2), 691-719.

Related work:
▶ Sufficient dimension reduction: Ying and Yu (2022) and Zhang et al.

(2024).
▶ Single index models: Bhattacharjee and Müller (2023) and Ghosal

et al. (2023).
▶ Principal component regression: Song and Han (2023).

These methods, while capable of reducing predictor dimensionality, are
confined to the construction of a universal kernel or strong assumptions
similar to those for classical single index and linear models.
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Fréchet Mean and Conditional Fréchet Mean

E(Y) = argmin
y∈R

E{(Y − y)2}, E(Y|X) = argmin
y∈R

E{(Y − y)2|X}.

▶ Mean ⇝ Fréchet mean (Fréchet, 1948):

E(Y)⇝ argmin
ω∈Ω

E{d2(Y, ω)}.

▶ Conditional mean ⇝ conditional Fréchet mean (Petersen & Müller,
2019):

E(Y|X)⇝ argmin
ω∈Ω

E{d2(Y, ω)|X}.
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Fréchet Regression

▶ To model the relationship between metric space-valued responses and
vector predictors, a natural target is the conditional Fréchet mean
(Petersen & Müller, 2019),

m(x) = argmin
ω∈Ω

E{d2(Y, ω)|X = x}. (1)

▶ In their work, Petersen and Müller (2019) extended both linear and
local linear regression to accommodate metric space-valued responses
by leveraging the algebraic structure inherent in the predictor space.
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Global Fréchet Regression

▶ Recall that for scalar responses, linear regression assumes a linear
relationship between X and the conditional mean of Y given X, i.e.,

E(Y|X) = β0 + β
′
1X.

▶ Using ordinary least squares, the regression function can be
alternatively characterized by

E(Y|X = x) = argmin
y∈R

E{sG(x)(Y − y)2},

where the weight function sG(x) = 1 + (X − µ)′Σ−1(x − µ) with
µ = E(X) and Σ = Var(X).
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Global Fréchet Regression

The global Fréchet regression, extending linear regression to metric
space-valued responses, is defined as

mG(x) = argmin
ω∈Ω

E{sG(x)d2(Y, ω)}, (2)

where the response Y is a random object residing in the metric space Ω.

Recall that the standard linear regression is

E(Y|X = x) = argmin
y∈R

E{sG(x)(Y − y)2}.
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Global Fréchet Regression

▶ Suppose that (Xi,Yi) ∼ F, i = 1, . . . , n are independent and define

X =
1
n

n∑
i=1

Xi, Σ̂ =
1
n

n∑
i=1

(Xi − X)(Xi − X)′.

▶ The regression function in (2) can be estimated by

m̂G(x) = argmin
ω∈Ω

1
n

n∑
i=1

siG(x)d2(Yi, ω), (3)

where siG(x) = 1 + (Xi − X)′Σ̂−1(x − X).
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Local Fréchet Regression

The local Fréchet regression, a generalization of local linear regression to
metric space-valued responses, follows a similar form but employs a
different weight function.
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Deep Fréchet Regression
▶ (Ω, d): a metric space with metric d : Ω× Ω 7→ [0,∞).
▶ M ⊂ Ω: a manifold isometric to a subspace of Rr.
▶ Z0 = ψ(Y) ∈ Rr: the low-dimensional representation of Y ∈ M.
▶ {(Xi,Yi)}n

i=1: n independent copies of the random pair (X,Y) in
Rp ×M, where M ⊂ Ω.

Figure 2: Schematic diagram for the deep Fréchet regression m = v ◦ g0.
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Manifold Learning
The representation map ψ : M 7→ Rr is unknown and must be estimated
from the data {Yi}n

i=1, yielding ψ̂. Suppose the manifold can be well
identified at the sample points through the ISOMAP algorithm.

Z0
i = (Z0

i1, . . . ,Z0
ir)

T = ψ(Yi), Zi = (Zi1, . . . ,Zir)
T = ψ̂(Yi).

For each j = 1, . . . , r, there exists a function πj : [0, 1]p×n 7→ R such that

Zij − Z0
ij = πj(X1, . . . ,Xn)(ϵij + unj), i = 1, . . . , n,

▶ the bias unj → 0 as n → ∞,
▶ {ϵij}n

i=1 are i.i.d. (mean zero) sub-Gaussian random variables and
independent of {Xi}n

i=1,
▶ there exists a constant Cπ such that

sup
{x1,...,xn}

|πj(x1, . . . , xn)| ≤ Cπ, for all j.
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Deep Neural Networks
▶ Observed predictors: Xi ∈ [0, 1]p
▶ Estimated responses: Zi = (Zi1, . . . ,Zir) = ψ̂(Yi)

▶ True responses: Z0
i = (Z0

i1, . . . ,Z0
ir) = ψ(Yi) = g0(Xi)

We model the relationship between Zi and Xi as

Zij = g0j(Xi) + πj(X1, . . . ,Xn)(ϵij + unj), j = 1, . . . , r.

The estimation of g0 is performed by minimizing the empirical risk

ĝ = argmin
g∈G

1
n

n∑
i=1

‖Zi − g(Xi)‖2,

where G is a class of neural networks.
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Local Fréchet Regression
▶ Estimated predictors: Ẑi = ĝ(Xi),
▶ True unobservable predictors: Z0

i = g0(Xi) = ψ(Yi),
▶ Response: Yi.

This leads to an errors-in-variables version of local Fréchet regression,

v̂h(z) = argmin
y∈Ω

1
n

n∑
i=1

ŵ(Ẑi, z, h)d2(Yi, y),

where
▶ ŵ(Ẑi, z, h) = 1

µ̂0−µ̂T
1 µ̂−1

2 µ̂1
Kh(Ẑi − z){1 − µ̂T

1 µ̂
−1
2 (Ẑi − z)},

▶ µ̂k = n−1 ∑n
i=1 Kh(Ẑi − z)(Ẑi − z)⊕k for k = 0, 1, 2,

▶ h is the bandwidth.
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i=1 Kh(Ẑi − z)(Ẑi − z)⊕k for k = 0, 1, 2,

▶ h is the bandwidth.

13 / 27



Rates of Convergence
Theorem
Under certain regularity conditions, we have

d{m̂(X),m(X)} = Op[h2/(γ1−1) + (nhr)−1/{2(γ2−1)}+

{h−r−1(κn log
3/2 n + un)}1/(γ3−1)]

where
▶ Deep Fréchet Regression: m̂ = v̂ ◦ ĝ,
▶ X is a new predictor independent of sample {(Xi,Yi)}n

i=1,

▶ κn reflects smoothness and intrinsic dimension of true function g0,
▶ u2

n = maxj=1,...,r |unj| is the the vanishing bias produced by ISOMAP,
▶ γj, j = 1, 2, 3, relates with the curvature of the metric space.
▶ γ1 = γ2 = γ3 = 2 for the Wasserstein space, the space of networks,

and the space of covariance/correlation matrices.
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Simulation Studies

▶ We consider sample sizes n = 100, 200, 500, 1000, with Q = 500
Monte Carlo runs.

▶ Predictor X ∈ R9.
▶ Metric space-valued responses Y: distributions and networks.
▶ The intrinsic dimension of the manifold M: r = 2.
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Distributions

Table 1: Average mean squared prediction error of deep Fréchet regression
(DFR), global Fréchet regression (GFR) (Petersen & Müller, 2019) and sufficient
dimension reduction (SDR) (Zhang et al., 2024) for distributional responses.

n DFR GFR SDR
100 34.000 52.573 43.598
200 20.976 48.140 26.128
500 12.544 45.712 18.742
1000 7.874 46.418 15.719
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Networks

Table 2: Average mean squared prediction error of deep Fréchet regression
(DFR), global Fréchet regression (GFR) (Zhou & Müller, 2022) and sufficient
dimension reduction (SDR) (Zhang et al., 2024) for network responses.

n DFR GFR SDR
100 88.025 97.994 94.843
200 52.404 91.872 73.035
500 21.486 88.940 59.609
1000 11.701 87.416 56.257
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Comparison of Different Manifold Learning Methods

Table 3: Median mean squared prediction error of deep Fréchet regression using
various manifold learning techniques, including ISOMAP (Tenenbaum et al.,
2000), t-SNE (Van der Maaten & Hinton, 2008), UMAP (McInnes & Healy,
2018), Laplacian eigenmaps (LE) (Belkin & Niyogi, 2003) and diffusion maps
(DM) (Coifman & Lafon, 2006).

n ISOMAP tSNE UMAP LE DM
100 26.792 30.773 38.193 36.015 29.772
200 16.182 17.010 21.715 21.960 18.063
500 8.363 9.790 11.018 12.635 9.931
1000 4.674 6.228 5.998 8.707 6.298
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New York Yellow Taxi Data

▶ Responses: daily traffic networks from Jan 1, 2017 to Dec 31, 2019
in Manhattan.

▶ 15 Predictors: daily weather information, indicators for days of the
week or holiday, and daily trip features averaged over each day.

Table 4: Average mean squared prediction error of deep Fréchet regression
(DFR), global Fréchet regression (GFR) (Zhou & Müller, 2022) and sufficient
dimension reduction (SDR) (Zhang et al., 2024) for New York yellow taxi data.

DFR GFR SDR
0.0074 0.0136 0.0166
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New York Yellow Taxi Data
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Human Mortality Data

▶ Responses: Age-at-death distributions of 162 countries in 2015.
▶ 9 Predictors: demographic (population density, sex ratio, mean

childbearing age), economic (GDP, GVA, CPI, unemployment rate,
health expenditure), and environmental (arable land) factors in 2015.

Table 5: Average mean squared prediction error of deep Fréchet regression
(DFR), global Fréchet regression (GFR) (Petersen & Müller, 2019) and sufficient
dimension reduction (SDR) (Zhang et al., 2024) for human mortality data.

DFR GFR SDR
26.377 31.322 27.602
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Human Mortality Data
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Figure 3: Age-at-death densities at different levels of GDP, health expenditure
and gross value added (GVA) by agriculture (%GDP).
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Contribution
▶ Using deep learning for Fréchet regression, highlighting its efficacy as

a powerful tool for the regression of metric-space-valued responses.

▶ Allowing high-dimensional predictors for metric-space-valued
responses residing in a low-dimensional manifold.

▶ Investigating the convergence rate of deep neural networks in the
presence of dependent sub-Gaussian noise accompanied by bias.

▶ Establishing convergence rate in the presence of errors in predictors
for local Fréchet regression,

▶ Demonstrating how local Fréchet regression can be used to map the
low-dimensional representation back to the original metric space.
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