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» Samples of random objects (non-Euclidean data) that take values in a
metric space are becoming increasingly prevalent.

» Due to the absence of a vector space structure, basic statistical tools
for scalar/vector data are no longer applicable.

» Examples of random objects:
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Figure 1: Left: Age-at-death densities of 162 countries in 2015. Right: Taxi
traffic network on Jan 1, 2017 in Manhattan.
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Motivation

> Modeling the relationship between metric space-valued responses and
moderate to high-dimensional Euclidean predictors nonparametrically.

» Two primary challenges:

» Curse of dimensionality in nonparametric regression.
» Absence of linear structure in general metric spaces.
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Petersen, A., & Miiller, H. G. (2019). Fréchet regression for random
objects with Euclidean predictors. Annals of Statistics, 47(2), 691-719.

Related work:

» Sufficient dimension reduction: Ying and Yu (2022) and Zhang et al.

(2024).

» Single index models: Bhattacharjee and Miiller (2023) and Ghosal
et al. (2023).

» Principal component regression: Song and Han (2023).

These methods, while capable of reducing predictor dimensionality, are
confined to the construction of a universal kernel or strong assumptions
similar to those for classical single index and linear models.
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Fréchet Mean and Conditional Fréchet Mean
E(Y) = argmin E{(Y - y)?}, E(Y|X) = argmin E{(Y — y)?|X}.
yeR yeR

» Mean ~~ Fréchet mean (Fréchet, 1948):

E(Y) ~ arfergin E{d*(Y,w)}.

» Conditional mean ~~ conditional Fréchet mean (Petersen & Miiller,

2019):
E(V1X) ~ arfergin E{P(Y,w)|X}.
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Fréchet Regression

> To model the relationship between metric space-valued responses and
vector predictors, a natural target is the conditional Fréchet mean
(Petersen & Miiller, 2019),

m(x) = arg min E{d?(Y,w)|X = x}. (1)
we
» In their work, Petersen and Miiller (2019) extended both linear and
local linear regression to accommodate metric space-valued responses
by leveraging the algebraic structure inherent in the predictor space.
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Global Fréchet Regression

P Recall that for scalar responses, linear regression assumes a linear
relationship between X and the conditional mean of Y given X, i.e.,

E(YIX) = Bo + B1 X.

» Using ordinary least squares, the regression function can be
alternatively characterized by

E(YIX = x) = arg min E{s6(x)(Y — y)*},
yeR

where the weight function sg(x) = 1+ (X — p)'E 1(x — p) with
p = E(X) and X = Var(X).
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Global Fréchet Regression

The global Fréchet regression, extending linear regression to metric
space-valued responses, is defined as

mg(x) = argergin E{sc(x)d?(Y,w)}, (2)

where the response Y is a random object residing in the metric space €.

Recall that the standard linear regression is

E(Y|X=x)= argergin E{sg(x)(Y — y)?}.
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Global Fréchet Regression

» Suppose that (X;, Y;) ~ F,i=1,...,n are independent and define

Z $ = %Z(x,-—)?)(x,-—)?)’.

i=1

] \hﬂ

» The regression function in (2) can be estimated by

1 n
mg(x) = arg min - Z sic(x)dP(Yi,w), (3)
we —1

where sig(x) = 1+ (X; — XS 1(x— X).
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Local Fréchet Regression

The local Fréchet regression, a generalization of local linear regression to
metric space-valued responses, follows a similar form but employs a
different weight function.
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Deep Fréchet Regression
> (Q,d): a metric space with metric d: Q x Q +— [0, c0).
> M C Q: a manifold isometric to a subspace of R".
» Z0 = 4)(Y) € R": the low-dimensional representation of Y € M.

» {(Xi, Yi)}1: nindependent copies of the random pair (X, Y) in
RP x M, where M C Q.
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Deep Fréchet Regression
> (Q,d): a metric space with metric d: Q x Q +— [0, c0).
> M C Q: a manifold isometric to a subspace of R".
» Z0 = 4)(Y) € R": the low-dimensional representation of Y € M.

» {(Xi, Yi)}1: nindependent copies of the random pair (X, Y) in
RP x M, where M C Q.

Deep Fréchet Regression: m=vogq

X e 0,1

Eg(Y]X)

Figure 2: Schematic diagram for the deep Fréchet regression m = vo gp.
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Manifold Learning

The representation map ¥ : M — R" is unknown and must be estimated
from the data {Y;},, yielding 1. Suppose the manifold can be well
identified at the sample points through the ISOMAP algorithm.

2=(2,....2)" =Yy, Zi=(Zn,....Z)" =9(Y).

]
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Manifold Learning

The representation map ¥ : M — R" is unknown and must be estimated
from the data {Y;},, yielding 1. Suppose the manifold can be well
identified at the sample points through the ISOMAP algorithm.

2=(2,....2)" =Yy, Zi=(Zn,....Z)" =9(Y).

]

For each j=1,...,r, there exists a function 7; : [0, 1]P*"” — R such that

Z,‘j—ZS}:WJ‘(XI...?X”)(EU—FU,U'), i:].,...,n,

» the bias u,; — 0 as n — oo,

» {ej}7, areii.d. (mean zero) sub-Gaussian random variables and
independent of {X;}7 ,,

> there exists a constant C; such that

sup |mj(x1,...,xn)| < G, forall j.
{X1,.Xn}
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Deep Neural Networks

» Observed predictors: X; € [0, 1]P
» Estimated responses: Z; = (Za,...,Zir) = ’QE(Y,)
> True responses: Z0 = (Z29,...,20) = (Vi) = go(X))
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Deep Neural Networks

» Observed predictors: X; € [0, 1]P
» Estimated responses: Z; = (Za,...,Zir) = ’QE(Y,)
> True responses: Z0 = (Z29,...,20) = (Vi) = go(X))

We model the relationship between Z; and X; as

Z,J:gOJ(X,)—HrJ(XlX,,)(e,j—i—unj), j: 1,
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Deep Neural Networks

» Observed predictors: X; € [0, 1]P
» Estimated responses: Z; = (Za,...,Zir) = ’QE(Y,)
> True responses: Z0 = (Z29,...,20) = (Vi) = go(X))

We model the relationship between Z; and X; as

Zj = goj(Xi) + mi( X1, ..., Xn)(ejj+ unj), j=1,...,r.
The estimation of gy is performed by minimizing the empirical risk
1 n
g=argmin—> (1Z; - g(X))|?,
gmin-_ ; j j

where G is a class of neural networks.
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Local Fréchet Regression

> Estimated predictors: Z; = g(X;),
> True unobservable predictors: Z0 = go(X;) = p(Y5),
P> Response: Y.
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Local Fréchet Regression

> Estimated predictors: Z; = g(X;),
> True unobservable predictors: Z0 = go(X;) = p(Y5),
P> Response: Y.

This leads to an errors-in-variables version of local Fréchet regression,

1N, 2
I\\/h(z) = arg min — Z '?V(ZH Z, h)dz(\/l') y)7
yeQ —1

Kn(Zi — 2){1 - pfh; " (Zi - 2)},
> k=00 Kn(Zi— 2)(Zi — 2)®K for k=0,1,2,
P his the bandwidth.
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Rates of Convergence

Theorem
Under certain regularity conditions, we have

d{ﬁ‘l(X), m(X)} = Op[h2/(’71_1) + (nhr)—l/{2(72_]_)}+
{h_’_l(/-a,, log®/% n+ un)}l/(%—l)]
where

» Deep Fréchet Regression: im = Vo g,

» X is a new predictor independent of sample {(X;, Y;)}7_,,
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Rates of Convergence

Theorem
Under certain regularity conditions, we have

d{ﬁ‘l(X), m(X)} — Op[h2/(’71_1) + (nhr)—l/{2(72_]_)}+
{h_r_l(/-a,, log®/% n+ un)}l/(%—l)]

where

| 2

vVvYvyyvyy

Deep Fréchet Regression: in = Vo g,

X is a new predictor independent of sample {(X;, Y;)}7_,,

kn reflects smoothness and intrinsic dimension of true function gy,
= maxj—1,...r|Unj| is the the vanishing bias produced by ISOMAP,
vj, J=1,2,3, relates with the curvature of the metric space.

Y1 = 2 = y3 = 2 for the Wasserstein space, the space of networks,
and the space of covariance/correlation matrices.
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Simulation Studies

» We consider sample sizes n = 100, 200, 500, 1000, with @ = 500
Monte Carlo runs.

» Predictor X € R?.
» Metric space-valued responses Y: distributions and networks.

» The intrinsic dimension of the manifold M: r= 2.
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Distributions

Table 1: Average mean squared prediction error of deep Fréchet regression
(DFR), global Fréchet regression (GFR) (Petersen & Miiller, 2019) and sufficient
dimension reduction (SDR) (Zhang et al., 2024) for distributional responses.

n DFR GFR SDR
100 | 34.000 52.573 43.598
200 | 20.976 48.140 26.128
500 | 12.544 45712 18.742
1000 | 7.874 46.418 15.719
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Networks

Table 2: Average mean squared prediction error of deep Fréchet regression
(DFR), global Fréchet regression (GFR) (Zhou & Miiller, 2022) and sufficient
dimension reduction (SDR) (Zhang et al., 2024) for network responses.

n DFR GFR SDR
100 | 88.025 97.994 94.843
200 | 52.404 91.872 73.035
500 | 21.486 88.940 59.609

1000 | 11.701 87.416 56.257
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Comparison of Different Manifold Learning Methods

Table 3: Median mean squared prediction error of deep Fréchet regression using
various manifold learning techniques, including ISOMAP (Tenenbaum et al.,
2000), t-SNE (Van der Maaten & Hinton, 2008), UMAP (Mclnnes & Healy,
2018), Laplacian eigenmaps (LE) (Belkin & Niyogi, 2003) and diffusion maps
(DM) (Coifman & Lafon, 2006).

n ISOMAP tSNE UMAP LE DM
100 26.792 30.773 38.193 36.015 29.772
200 16.182 17.010 21.715 21.960 18.063
500 8.363 9.790 11.018 12.635 9.931
1000 4.674 6.228 5998 8.707  6.298
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New York Yellow Taxi Data

» Responses: daily traffic networks from Jan 1, 2017 to Dec 31, 2019
in Manhattan.

» 15 Predictors: daily weather information, indicators for days of the
week or holiday, and daily trip features averaged over each day.

Table 4: Average mean squared prediction error of deep Fréchet regression
(DFR), global Fréchet regression (GFR) (Zhou & Miiller, 2022) and sufficient
dimension reduction (SDR) (Zhang et al., 2024) for New York yellow taxi data.

DFR GFR SDR
0.0074 0.0136 0.0166
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Human Mortality Data

> Responses: Age-at-death distributions of 162 countries in 2015,

» 9 Predictors: demographic (population density, sex ratio, mean
childbearing age), economic (GDP, GVA, CPI, unemployment rate,
health expenditure), and environmental (arable land) factors in 2015.

Table 5: Average mean squared prediction error of deep Fréchet regression
(DFR), global Fréchet regression (GFR) (Petersen & Miiller, 2019) and sufficient
dimension reduction (SDR) (Zhang et al., 2024) for human mortality data.

DFR GFR SDR
26.377 31.322 27.602
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Human Mortality Data
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Figure 3: Age-at-death densities at different levels of GDP, health expenditure
and gross value added (GVA) by agriculture (%GDP).
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Contribution

» Using deep learning for Fréchet regression, highlighting its efficacy as
a powerful tool for the regression of metric-space-valued responses.

> Allowing high-dimensional predictors for metric-space-valued
responses residing in a low-dimensional manifold.
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Contribution

» Using deep learning for Fréchet regression, highlighting its efficacy as
a powerful tool for the regression of metric-space-valued responses.

> Allowing high-dimensional predictors for metric-space-valued
responses residing in a low-dimensional manifold.

> Investigating the convergence rate of deep neural networks in the
presence of dependent sub-Gaussian noise accompanied by bias.

» Establishing convergence rate in the presence of errors in predictors
for local Fréchet regression,

» Demonstrating how local Fréchet regression can be used to map the
low-dimensional representation back to the original metric space.
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