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Motivation

In accelerated longitudinal studies, subjects
are enrolled in the study at a random time
within the time domain and are only tracked
for a limited amount of time relative to the
domain of interest.

Denoting the domain by T = [a, b], the ith
subject is only observed on a sub-interval
[Ai, Bi] ⊂ T whereBi − Ai ≤ η(b− a) for all i.
Functional snippets: η is much smaller than 1.

Figure 1. Design plots for females in the Nepal growth study
data.
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Alternative Formulation of Stochastic Differential Equations

A typical (Itô) stochastic differential equation (SDE) takes the form{
dXt = b(t, Xt)dt + σ(t, Xt)dBt, t ∈ T ,

X0 = x0,

whereXt = X(t) is a stochastic process on (Ω,F , P ), b and σ are the drift and
diffusion coefficients, respectively, andBt is a Brownianmotion.

The drift and diffusion coefficients can be viewed as the instantaneous rate of
change in themean and squared fluctuations of the process givenXt,

b(t, x) = lim
s→t+

1
s− t

E(Xs−Xt|Xt = x), σ2(t, x) = lim
s→t+

1
s− t

Var(Xs−Xt|Xt = x).

Alternative formulation of the SDE,

lim
s→t+

(Xs −Xt) =

lim
s→t+

{
E(Xs|Xt)− E(Xt|Xt)

s− t
(s− t) +

{
Var(Xs|Xt)− Var(Xt|Xt)

s− t

}1/2
(Bs −Bt)

}
We then simulate the continuous-time processXt at the discrete time points
tk, k = 1, . . . , K , given an initial conditionX0 = x0, by the recursion

Xk −Xk−1 =
E(Xk|Xk−1)− E(Xk−1|Xk−1)

∆
∆ +

{
Var(Xk|Xk−1)− Var(Xk−1|Xk−1)

∆

}1/2
(Btk
−Btk−1),

where∆ = tk − tk−1 andXk = Xtk
.

Observing thatE(Xk−1|Xk−1) = Xk−1,Var(Xk−1|Xk−1) = 0, and
(Btk
−Btk−1)/

√
∆ ∼ N(0, 1), the above recursion reduces to

Xk = E(Xk|Xk−1) + {Var(Xk|Xk−1)}1/2Wk, X0 = x0, (1)

whereWk ∼ N(0, 1) are independent for k = 1, . . . , K .

Under Gaussian assumption on the processXt, the recursion in (1) generates an
exact simulation ofXt at t1, . . . , tK .

To estimate sample paths of the processXt, one needs to iteratively generate a
random sample fromN{E(Xk|Xk−1), Var(Xk|Xk−1)} to simulateXt at tk for
k = 1, . . . , K . In practice, both the conditional meanE(Xk|Xk−1) and conditional
varianceVar(Xk|Xk−1) are unknown.

Estimating Sample Paths From Functional Snippets

Consider an underlying stochastic processXt with mean function µ(t) = E(Xt),
covariance functionΣ(s, t) = Cov(Xs, Xt), and n realizations {Xt,1, . . . , Xt,n}.
We aim to infer stochastic dynamics ofXt from the observed snippets (Tij, Yij),
i = 1, . . . , n, j = 1, . . . , Ni, where Yij = XTij,i and |Tij − Tik| ≤ η(b− a).
To illustrate the effectiveness of the proposedmethod for snippets with minimal
numbers of observations, we consider the caseNi = 2 for simplicity.

LetZi = (Yi1, Ti1)′ and with a slight abuse of notation set Yi = Yi2 for i = 1, . . . , n.
Viewing the {(Zi, Yi)}n

i=1 as i.i.d. realizations of the pair of random variables
(Z, Y ), consider the regressionmodel

Yi = m(Zi) + v(Zi)ϵi,

wherem(z) = E(Y |Z = z) and v2(z) = Var(Y |Z = z) are respectively the
conditional mean and conditional variance functions. The error term ϵi satisfies
E(ϵi|Zi) = 0 andVar(ϵi|Zi) = 1.
With estimates of the conditional mean function m̂(·) and the conditional
variance function v̂2(·) in hand, the corresponding recursive procedure to obtain
Xt at t1, . . . , tK is

X̂1 = m̂(Z0) + v̂(Z0)W1,

X̂k = m̂(Ẑk−1) + v̂(Ẑk−1)Wk, k = 2, . . . , K,
(2)

whereZ0 = (x0, t0)′ and Ẑk−1 = (X̂k−1, tk−1)′ for k = 2, . . . , K .

Algorithm1: Estimating sample paths ofXt from functional snippets
Input: training data {(Zi, Yi)}n

i=1, initial conditionZ0 = (x0, t0)′, and
time discretization {tk, k = 0, . . . , K}.

Output: (X̂0, . . . , X̂K)′.
1 for k = 1, . . . , K do
2 Estimate the conditional meanE(Xk|Xk−1) and conditional

varianceVar(Xk|Xk−1) by m̂(Ẑk−1) and v̂2(Ẑk−1), respectively;
3 Draw a random sample X̂k fromN{m̂(Zk−1), v̂2(Zk−1)};
4 Ẑk ← (X̂k, tk)′;
5 end

Theorem 1

If the stochastic processXt is Gaussian and satisfies certain regularity conditions, then for
the estimated sample path of the SDE as defined in (2),

{E(|X̂K −XK|2)}1/2 = O(αn + βn),
where αn and βn are the rates of convergence for the conditional mean function estimate
m̂(·) and conditional variance function estimate v̂2(·).

Remark

If Xt is non-Gaussian, the rate of convergence for the estimated sample path can be
similarly derived by assuming Lipschitz continuity form(·) and v2(·).
Theorem 1 also applies to X̂k for any k, thereby establishing pathwise strong
convergence of the estimated sample path to the true process.
αn = βn = n−1/2 for multiple linear regression and n−1/3 for local linear regression.

Finite Sample Performance

true sample paths estimated sample paths

simulated sample paths simulated snippets
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Figure 2. M = 100
simulated sample
paths (top left),
simulated snippets
(top right), true
sample paths
(bottom left), and
estimated sample
paths (bottom right)
for the Ornstein-
Uhlenbeck (O-U)
process. The sample
size is n = 100 and
the noise level is
ν = 0.1.

Sample
size

Noise
level

Ho-Leemodel O-U process
0 0.01 0.1 0 0.01 0.1

100 0.56 0.56 0.58 1.28 1.31 1.33
200 0.39 0.40 0.41 0.89 0.89 0.91
500 0.24 0.23 0.27 0.56 0.53 0.54
1000 0.17 0.17 0.21 0.37 0.37 0.38
2000 0.12 0.12 0.17 0.25 0.26 0.26
5000 0.07 0.07 0.14 0.16 0.16 0.17

Table 1. Average root-mean-square error for
different sample sizes and noise levels.

ARMSE = Q−1 ∑Q
q=1 RMSEq, where

RMSEq =

{
1

M

M∑
l=1

(X̂tK ,l −XtK ,l)2

}1/2

The ARMSE decreases with increasing
sample size, while the presence of noise
does not impact the results much.

Nepal Growth Study Data

This data set contains height measurements for 107 males and 93 females from rural
Nepal takenatfiveadjacent timepoints frombirth to76months, spacedapproximately
four months apart.
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The starting heightX0 is
chosen as the initial height
measurement.

Compared to the estimated
growth patterns, the recent
height measurement for the
selectedmale falls below
the 5% percentile curve,
suggesting potential
developmental delay and
the need for additional
monitoring.

Figure 3. Observed growth snippets (left) and estimated growth curves (right) for the Nepal growth
study data. The black dashed curves indicate 5%, 50%, and 95% percentiles. Height measurements for
the selected female andmale are also highlighted.
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