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The drift and diffusion coefficients can be viewed as the instantaneous rate of
change in the mean and squared fluctuations of the process given X,
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Alternative formulation of the SDE,
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We then simulate the continuous-time process X, at the discrete time points
tr, k=1,..., K, given aninitial condition X, = z, by the recursion
X — X1 =

E(Xk| Xro1) — B(Xp_1|X4_1) Var( Xy Xp_1) — Var(Xp_1| X1) ) 2

A A T A (Btk o Btk_l)a

where A =1t — 1 and X = X3,
Observing that E(Xy_1| Xr-1) = Xi—1, Var(X;_1|Xp_1) = 0, and
(B;, — By, )/VA ~ N(0,1), the above recursion reduces to
X = B(X3| Xp1) + {Var(Xy | X))} PW, Xy = 0, (1)
where W, ~ N (0, 1) are independentfork =1,..., K.

Under Gaussian assumption on the process Xy, the recursionin (1) generates an
exact simulationof X atty, ... tx.

To estimate sample paths of the process X, one needs to iteratively generate a
random sample from N{ E( X | X, 1), Var(X;| X, 1)} tosimulate X; at ¢, for
k=1,..., K. Inpractice, both the conditional mean E(X}|X;_1) and conditional
variance Var(X|X;_1) are unknown.

Nttps./yidongzhou.github.io/

Algorithm 1: Estimating sample paths of X; from functional snippets
Input: training data {(Z;, Y;) }/_,, initial condition Zy = (=, ty)’, and
time discretization {tx,k =0,..., K}
OUtpUtZ (X(), Ce ,XK)/.
1 fork=1,...,Kdo
2 Estimate the conditional mean E(X| X;_1) and conditional

variance Var(X;| Xy_1) by m(Z,_1) and 9%(Z;_1), respectively;
3 Draw a random sample X}, from N{m(Z_1), 0*(Z_1) };

4 Zk < (Xk, tk>/;

5 end

Theorem 1

If the stochastic process X; is Gaussian and satisfies certain regularity conditions, then for
the estimated sample path of the SDE as defined in (2),

{B(1 Xk — Xk[)}'"? = Ol + By),

where a,, and [, are the rates of convergence for the conditional mean function estimate
1(+) and conditional variance function estimate 9=(-).

Remark

= |f X, is non-Gaussian, the rate of convergence for the estimated sample path can be
similarly derived by assuming Lipschitz continuity for m(-) and v(+).

= Theorem 1 also applies to X;. for any k, thereby establishing pathwise strong
convergence of the estimated sample path to the true process.

= a,, = B, = n/* for multiple linear regression and n.~'/3 for local linear regression.
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does not impact the results much.

Nepal Growth Study Data

This data set contains height measurements for 107 males and 23 females from rural
Nepal taken at five adjacent time points from birth to /6 months, spaced approximately
four months apart.
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Figure 3. Observed growth snippets (left) and estimated growth curves (right) for the Nepal growth
study data. The black dashed curves indicate 5%, 50%, and 95% percentiles. Height measurements for
the selected female and male are also highlighted.
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