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What is Functional Data

▶ Functional data arise when the basic observational unit is a function
or curve, rather than a scalar or vector.

▶ Common in longitudinal, biomedical, financial, and engineering
applications.

▶ Example: Growth curves, ECG signals, temperature trajectories, stock
price curves.
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Types of Functional data

Type Description Examples
Dense Many measurements per subject at well-

spaced time points across the entire domain
Wearable device data,
EEG, growth studies

Sparse A small number of measurements per sub-
ject, spread over the entire domain

Survey data, clinical vis-
its

Snippet Few measurements per subject over a narrow
sub-interval of the domain

Accelerated longitudinal
studies
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Dense Functional Data
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Figure 1: Berkeley Growth Study: Height measurements for 54 females (left) and
39 males (right), each with 31 regularly spaced observations (Tuddenham &
Snyder, 1954).
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Sparse Functional Data
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Figure 2: Albumin levels measured for 35 hemodialysis patients, each with 12–18
irregularly spaced observations (Kaysen et al., 2000).
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Functional Snippets
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Figure 3: Nepal Growth Study: Height measurements for 87 females (left) and 96
males (right), each with 2–5 observations spaced approximately four months
apart, spanning at most 16 months (West Jr et al., 1997).
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Functional Snippets
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Figure 4: Spinal Bone Mineral Density Study: Bone density measurements for 153
females (left) and 127 males (right), each with 2–4 observations spaced
approximately one year apart (Bachrach et al., 1999).
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What Are Functional Snippets?

▶ In accelerated longitudinal studies, subjects are enrolled in the study
at a random time and are only tracked for a limited amount of time
relative to the domain of interest.

▶ These designs are common in social and life sciences due to lower
cost, reduced burden, and shorter follow-up per subject.

▶ Denote the domain of interest by T = [a, b]. Subject i is only
observed over a short interval [Ai ,Bi ] ⊂ T , where

Bi − Ai ≤ η(b − a), for some η ∈ (0, 1).

▶ When η is much smaller than 1, these are functional snippets.
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The Core Challenge of Functional Snippets

▶ Assume the observed snippets are generated by an underlying
stochastic process Xt = X (t) defined on a compact domain T , which
we take without loss of generality to be [0, 1].

▶ In standard functional data analysis, we typically estimate:
▶ Mean function: µ(t) = E (Xt)
▶ Covariance function: Σ(s, t) = Cov(Xs ,Xt)
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The Core Challenge of Functional Snippets

For functional snippets, observations are
concentrated near the diagonal in the
design plot.

▶ Design plot for females in the Nepal
Growth Study.

▶ There is no information in the
off-diagonal regions.

▶ Covariance estimation is ill-posed.

▶ Functional PCA and
smoothing-based methods fail.
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The Core Challenge of Functional Snippets

Covariance completion methods require
strong, unverifiable assumptions about
the global structure of the covariance
function.
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We need a fundamentally different approach.
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A New Perspective: Modelling Dynamics via SDEs

▶ Our approach: Instead of estimating the covariance structure, we
model the underlying stochastic process Xt directly as the solution of
a data-adaptive stochastic differential equation (SDE).

▶ Key idea: Learn the local dynamics of Xt through the SDE

dXt = b(t,Xt) dt + σ(t,Xt) dBt , t ∈ T ,

where Bt is Brownian motion and b, σ are drift and diffusion terms.
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A New Perspective: Modelling Dynamics via SDEs

▶ Rather than imposing strong structural assumptions, we learn b and
σ nonparametrically from the data via conditional moments.

▶ This SDE-based framework enables the recovery of dynamic
distributions at the subject level, even from minimal snippets.
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From SDE to Diffusion Process

▶ Consider the stochastic differential equation (SDE):

dXt = b(t,Xt) dt + σ(t,Xt) dBt , t ∈ T .

▶ If b(t, x) and σ(t, x) satisfy two regularity conditions:
▶ Lipschitz condition:

|b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| ≤ C |x − y |.

▶ Linear growth condition:

|b(t, x)|+ |σ(t, x)| ≤ C (1 + |x |).

▶ Then the SDE has a unique solution, and Xt is a diffusion process
(a continuous-time stochastic process with continuous sample paths).
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Characterizing Drift and Diffusion

▶ For a diffusion process Xt , the drift and diffusion coefficients can be
interpreted as instantaneous rates of change:

▶ Drift: instantaneous change in the conditional mean.

b(t, x) = lim
s→t+

E(Xs − Xt |Xt = x)

s − t

▶ Diffusion: instantaneous change in the conditional variance.

σ2(t, x) = lim
s→t+

Var(Xs − Xt |Xt = x)

s − t

▶ These local characterizations make it possible to learn the local
dynamics of Xt from data.

14 / 37



Reformulating the SDE

To recover paths of Xt from snippets, we rewrite the SDE by plugging in
the alternative characterization of drift and diffusion coefficients:

lim
s→t+

(Xs − Xt)

= lim
s→t+

{
E (Xs |Xt)− E (Xt |Xt)

s − t
(s − t) +

{
Var(Xs |Xt)−Var(Xt |Xt)

s − t

}1/2

(Bs − Bt)

}
.

The above formula gives rise to a method to simulate the continuous-time
process Xt at a set of discrete time points given an initial condition.
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Discretizing the SDE
▶ Given a time grid 0 = t0 < t1 < · · · < tK = 1 with spacing ∆, we

approximate the process recursively:

Xk − Xk−1 =
E(Xk |Xk−1)− E(Xk−1|Xk−1)

∆
∆

+

{
Var(Xk |Xk−1)−Var(Xk−1|Xk−1)

∆

}1/2

(Btk − Btk−1
),

where Xk = Xtk for k = 0, . . . ,K .

▶ Using properties of conditional expectation and Brownian increments:

E(Xk−1|Xk−1) = Xk−1, (Btk − Btk−1
)/
√
∆ ∼ N(0, 1).

▶ The recursion simplifies to:

Xk = E(Xk |Xk−1) + {Var(Xk |Xk−1)}1/2Wk , Wk ∼ N(0, 1).
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This defines the evolution of Xk from Xk−1 using conditional mean and
conditional variance, which provides a practical simulation strategy to
reconstruct paths from snippets.

▶ To reconstruct paths of Xt , one needs to iteratively generate a sample
from the Gaussian distribution N{E (Xk |Xk−1), Var(Xk |Xk−1)}.

▶ In practice, both the conditional mean E (Xk |Xk−1) and the
conditional variance Var(Xk |Xk−1) are unknown and need to be
estimated from data.
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Estimating Conditional Mean and Variance

▶ Xk−1 = Xtk−1
contains two pieces of information: measurement Xk−1

and observation time tk−1.

▶ One can then formulate the estimation of E (Xk |Xk−1) and
Var(Xk |Xk−1) as a regression problem with response Xk and predictor
(Xk−1, tk−1)

′.
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Constructing the Regression Dataset

▶ Each subject is observed at least twice: say at Ti1 and Ti2, with
observations Yi1 and Yi2.

▶ Define Zi = (Yi1,Ti1)
′ and Yi = Yi2 for i = 1, . . . , n.

▶ Consider the regression model:

Yi = m(Zi ) + v(Zi ) ϵi , ϵi ∼ N(0, 1).
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▶ The conditional mean m(·) can be estimated using standard
regression techniques such as multiple linear regression or local linear
regression.

▶ For conditional variance v2(·), we fit a regression model to the
squared residuals:

{Yi − m̂(Zi )}2 ∼ Zi .
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Final Estimation

With the estimated conditional mean and variance m̂(·) and v̂2(·), we
reconstruct the sample path of Xt recursively, starting from an initial
condition X0 = x0:

X̂1 = m̂(Z0) + v̂(Z0)W1,

X̂k = m̂(Ẑk−1) + v̂(Ẑk−1)Wk , k = 2, . . . ,K ,

where Z0 = (x0, t0)
′ and Ẑk−1 = (X̂k−1, tk−1)

′ for k = 2, . . . ,K .
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Algorithm 1: Estimating Sample Paths

Input: Training data {(Zi ,Yi )}ni=1, initial condition Z0 = (x0, t0)
′, and

time discretization {tk , k = 0, . . . ,K}.
Output: (X̂1, . . . , X̂K )

′.
1 for k = 1, . . . ,K do
2 Estimate the conditional mean E (Xk |Xk−1) and conditional

variance Var(Xk |Xk−1) by m̂(Ẑk−1) and v̂2(Ẑk−1), respectively;

3 Draw a random sample X̂k ∼ N{m̂(Ẑk−1), v̂
2(Ẑk−1)};

4 Set Ẑk ← (X̂k , tk)
′;

5 end
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Theoretical Foundations: Existence and Uniqueness

▶ Under regularity conditions and Gaussianity, the alternative SDE
formulation we use admits a pathwise unique strong solution.

▶ Takeaway: Our data-driven SDE is not just a heuristic — it
corresponds to a well-defined stochastic process.
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Main Theoretical Result: Pathwise Convergence

Theorem
Assume regularity conditions and Gaussianity. Then the estimated sample
path obtained from Algorithm 1 satisfies{

E
(
|X̂K − XK |2

)}1/2
= O(αn + βn),

where αn and βn are the convergence rates for the estimated conditional
mean function m̂(·) and variance function v̂2(·), respectively.

This result ensures that both the mean and variance of X̂k consistently
approximate those of the true process Xk . Moreover, the convergence
holds uniformly over k = 1, . . . ,K , thereby establishing the pathwise
consistency of the estimated sample path.
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Corollary: Distributional Convergence

Corollary

Under the same assumptions as the theorem, the distribution of the
estimated process X̂K converges to that of the true process XK in
Wasserstein distance:

dW

{
L(X̂K ), L(XK )

}
= O(αn + βn),

where L(XK ) denotes the law of XK , and dW is the Wasserstein distance.

This result means our method not only reconstructs individual paths
accurately, but also recovers the correct population-level distribution of
outcomes.
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Understanding the Convergence Rates

▶ The theoretical accuracy of our reconstructed path depends on two
key quantities: αn and βn.

▶ These rates depend on the choice of regression method used to
estimate the conditional mean and variance.[
E{|m̂(z)−m(z)|2}

]1/2
= O(αn),

[
E{|v̂2(z)− v2(z)|2}

]1/2
= O(βn).

▶ If the same regression method is used for both m̂ and v̂2, then
βn = αn. Typical examples include
▶ Multiple linear regression: αn = βn = n−1/2.
▶ Local linear regression: αn = βn = n−1/3.
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Overview of Real Data Applications

▶ We apply the proposed method to two longitudinal datasets: Nepal
Growth Study and Spinal Bone Mineral Density Study.

▶ Both datasets feature:
▶ Irregular and sparse measurements across individuals.
▶ Short longitudinal windows per subject.
▶ No full-trajectory coverage across individuals.

▶ These properties make them well-suited for evaluating the proposed
SDE-based modelling of functional snippets.
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Summary of Real Data Applications

Nepal Growth Study

▶ n = 183 (87 females, 96 males).

▶ 2–5 height measurements per child over a short window of
approximately 16 months.

Spinal Bone Mineral Density Study

▶ n = 280 (153 females, 127 males).

▶ 2–4 bone mineral density measurements per subject, taken annually.
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Modelling Setup

▶ We apply the proposed method separately to male and female
subjects.

▶ Conditional mean m̂(·) and variance v̂2(·) are estimated using local
linear regression.
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Nepal Growth Study: Growth Monitoring

▶ Beyond recovering population trends, the proposed method enables
individualized growth monitoring — predicting a child’s future
development from minimal early data.

▶ As new measurements become available, they can be compared
against the predicted growth trajectory to screen for developmental
deviations.
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Nepal Growth Study: Growth Monitoring

▶ We illustrate this using two children not included in model fitting:
▶ Selected female: only one height measurement at 4 months: 52.9 cm.
▶ Selected male: two measurements at 12 and 20 months: 63 cm and

65.1 cm.

▶ For each child, we simulate 100 sample paths using the recursive
procedure in Algorithm 1 and construct 5%, 50%, and 95% percentile
growth curves.
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Nepal Growth Study: Key Findings
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For the selected male, the new observed height at 20 months (65.1 cm)
falls below the 5% percentile, potentially indicating growth delay and
prompting clinical follow-up.
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Spinal Bone Mineral Density Study
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The reconstructed curves
reflect known physiological
trends:

▶ Female plateaus around
age 16.

▶ Male plateaus later,
around age 18.

The model reconstructs realistic subject-specific trajectories despite data
sparsity, effectively capturing growth trends and uncertainty.
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Key Takeaways

▶ We proposed a dynamic modelling framework for functional snippets
via data-adaptive SDEs.

▶ Our approach bypasses covariance estimation and enables
subject-level path reconstruction.

▶ Theoretical guarantees establish pathwise consistency of the
reconstructed trajectories.

▶ Applications to growth and bone density data demonstrate the
method’s flexibility and clinical utility, especially for early screening
and prediction.
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Questions?
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