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What is Functional Data

» Functional data arise when the basic observational unit is a function
or curve, rather than a scalar or vector.

» Common in longitudinal, biomedical, financial, and engineering
applications.

> Example: Growth curves, ECG signals, temperature trajectories, stock
price curves.
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Types of Functional data

Type

Description

Examples

Dense

Many measurements per subject at well-
spaced time points across the entire domain

Wearable device data,
EEG, growth studies

Sparse

A small number of measurements per sub-
ject, spread over the entire domain

Survey data, clinical vis-
its

Snippet

Few measurements per subject over a narrow
sub-interval of the domain

Accelerated longitudinal
studies
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Dense Functional Data
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Figure 1. Berkeley Growth Study: Height measurements for 54 females (left) and

39 males (right), each with 31 regularly spaced observations (Tuddenham &
Snyder, 1954).
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Sparse Functional Data
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Figure 2: Albumin levels measured for 35 hemodialysis patients, each with 12-18
irregularly spaced observations (Kaysen et al., 2000).
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Functional Snippets

Female Male

120

110

100

90

80

Height (cm)

70

60

50

0 & 16 24 32 40 48 56 64 72 0 8 16 24 32 40 48 56 64 72
Age (month)
Figure 3: Nepal Growth Study: Height measurements for 87 females (left) and 96

males (right), each with 2-5 observations spaced approximately four months
apart, spanning at most 16 months (West Jr et al., 1997).
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Functional Snippets
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Figure 4: Spinal Bone Mineral Density Study: Bone density measurements for 153

females (left) and 127 males (right), each with 2—4 observations spaced
approximately one year apart (Bachrach et al., 1999).
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What Are Functional Snippets?

P In accelerated longitudinal studies, subjects are enrolled in the study
at a random time and are only tracked for a limited amount of time
relative to the domain of interest.

» These designs are common in social and life sciences due to lower
cost, reduced burden, and shorter follow-up per subject.

» Denote the domain of interest by 7" = [a, b]. Subject i is only
observed over a short interval [A;, B]] C T, where

B; — A; <n(b—a), forsomene(0,1).

» When 71 is much smaller than 1, these are functional snippets.
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The Core Challenge of Functional Snippets

P> Assume the observed snippets are generated by an underlying
stochastic process X; = X(t) defined on a compact domain 7, which
we take without loss of generality to be [0, 1].

» In standard functional data analysis, we typically estimate:

» Mean function: u(t) = E(X;)
» Covariance function: X (s, t) = Cov(Xs, X:)
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The Core Challenge of Functional Snippets

For functional snippets, observations are
concentrated near the diagonal in the

design plot.
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The Core Challenge of Functional Snippets
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The Core Challenge of Functional Snippets
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We need a fundamentally different approach.
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A New Perspective: Modelling Dynamics via SDEs

» Our approach: Instead of estimating the covariance structure, we
model the underlying stochastic process X; directly as the solution of
a data-adaptive stochastic differential equation (SDE).

» Key idea: Learn the local dynamics of X; through the SDE

dXt = b(t,Xt) dt+0(t,Xt) dBt, t e T,

where B; is Brownian motion and b, o are drift and diffusion terms.
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A New Perspective: Modelling Dynamics via SDEs

» Rather than imposing strong structural assumptions, we learn b and
o nonparametrically from the data via conditional moments.

» This SDE-based framework enables the recovery of dynamic
distributions at the subject level, even from minimal snippets.
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From SDE to Diffusion Process
» Consider the stochastic differential equation (SDE):
dXe = b(t, X¢) dt + o(t, Xe)dBy, teT.

» If b(t,x) and o(t, x) satisfy two regularity conditions:
» Lipschitz condition:

|b(t, x) = b(t, y)| + |o(t, x) = a(t, y)| < Clx = .

» Linear growth condition:

|b(t, )| + [o(t,x)| < C(1 + [x]).

» Then the SDE has a unique solution, and X; is a diffusion process
(a continuous-time stochastic process with continuous sample paths).
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Characterizing Drift and Diffusion

» For a diffusion process X;, the drift and diffusion coefficients can be
interpreted as instantaneous rates of change:

» Drift: instantaneous change in the conditional mean.

b(t,x) = lim e = XelXe = X)

s—tt s—t

» Diffusion: instantaneous change in the conditional variance.

o?(t,x) = lim Var(Xs = Xi|X: = x)

s—tt s—t

» These local characterizations make it possible to learn the local
dynamics of X; from data.

14/37



Reformulating the SDE

To recover paths of X; from snippets, we rewrite the SDE by plugging in
the alternative characterization of drift and diffusion coefficients:

Iir?Jr()(s - Xt)
1/2
~ i { E(X5|Xt2: tE(Xf|Xf)(s o4 {Var(Xs|Xt2 - tVar(XtXt)} (B, - Bt)}.
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Reformulating the SDE

To recover paths of X; from snippets, we rewrite the SDE by plugging in
the alternative characterization of drift and diffusion coefficients:

“nng(Xs - Xt)
1/2
~ i { E(X5|Xt2: tE(Xf|Xf)(s o4 {Var(Xs|Xr2 - tvar(xtxt)} (B, - Bt)}.

The above formula gives rise to a method to simulate the continuous-time
process X; at a set of discrete time points given an initial condition.
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Discretizing the SDE
> Given a time grid 0 =ty < t; < --- < tx = 1 with spacing A, we
approximate the process recursively:
E(Xk | Xk—1) — E(Xk—1]|Xk—-1)
A
Var(Xie|Xe—1) — Var(Xe_1|Xi—1) | ¥
+{ (Xi| Xk—1) (Xk—1] Xk 1)} (B, — By, ),

A

Xk — Xp—1 =

A
where Xy = X, for k =0,...,K.
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Discretizing the SDE
> Given a time grid 0 =ty < t; < --- < tx = 1 with spacing A, we
approximate the process recursively:
E(Xk | Xk—1) — E(Xk—1]|Xk—-1)
A
Var(Xie|Xe—1) — Var(Xe_1|Xi—1) | ¥
+{ (Xi| Xk—1) (Xk—1] Xk 1)} (B, — By, ),

A

Xk — Xp—1 =

A

where Xy = X, for k =0,...,K.
» Using properties of conditional expectation and Brownian increments:

E(Xe—1/Xk-1) = Xe—1, (B, — Bi,_,)/VA ~ N(0,1).
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Discretizing the SDE
> Given a time grid 0 =ty < t; < --- < tx = 1 with spacing A, we
approximate the process recursively:
E(Xk | Xk—1) — E(Xk—1]|Xk—-1)
A
Var(Xie|Xe—1) — Var(Xe_1|Xi—1) | ¥
) V) g, g,

A

Xk — Xp—1 =

A
where Xy = X, for k =0,...,K.

» Using properties of conditional expectation and Brownian increments:

E(Xx_1|Xk_1) = Xk_1, (By, — Br,_,)/VA ~ N(0,1).
» The recursion simplifies to:

Xie = E(Xk| Xu—1) + {Var(Xe| Xe_1)}? Wi, Wi ~ N(0,1).
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This defines the evolution of X) from X,_1 using conditional mean and
conditional variance, which provides a practical simulation strategy to
reconstruct paths from snippets.

» To reconstruct paths of X;, one needs to iteratively generate a sample
from the Gaussian distribution N{E(Xy|Xk—1), Var(Xk|Xx-1)}

» In practice, both the conditional mean E(Xy|Xx_1) and the
conditional variance Var(Xk|Xk—_1) are unknown and need to be
estimated from data.
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Estimating Conditional Mean and Variance

» Xi_1 = Xg_, contains two pieces of information: measurement Xj_;
and observation time t,_1.

» One can then formulate the estimation of E(Xx|Xk—1) and

Var(Xx|Xk—1) as a regression problem with response Xj and predictor
(X1, tk—1)".
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Constructing the Regression Dataset

> Each subject is observed at least twice: say at T;; and Tj», with
observations Y;; and Y.

» Define Z; =(Yj1,Ti1) and Yi= Yo fori=1,... n.
» Consider the regression model:

Y, = m(Z,) + V(Z,') €, €~ N(O, 1).
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» The conditional mean m(-) can be estimated using standard
regression techniques such as multiple linear regression or local linear
regression.

» For conditional variance v2(-), we fit a regression model to the
squared residuals:

{Yi = m(Z))y* ~ Z.

20/37



Final Estimation

With the estimated conditional mean and variance m(-) and 0%(-), we
reconstruct the sample path of X; recursively, starting from an initial
condition Xg = Xxg:

k:’ﬁ( k—1)+‘7(2k—1)Wk7 k:27"'aK’

where Zy = (xo, tp)’ and Zi 1= ()A(k_l, tk—1) for k=2,..., K.
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Algorithm 1: Estimating Sample Paths

Input: Training data {(Z;, Y;)}"_,, initial condition Zy = (xo, to)’, and
time discretization {tk, k=0,...,K}.

Output: (Xi,...,Xk).

for k=1,..., K do
Estimate the conditional mean E(Xj|Xk_1) and conditional

variance Var(Xy|Xi_1) by m(Zi_1) and 0%(Z_1), respectively;

Draw a random sample Xy ~ N{@(Zk_1), 02(Zk_1)};
Set 2/( — ()?;ﬁ tk)/;

end

22/37



Theoretical Foundations: Existence and Uniqueness

» Under regularity conditions and Gaussianity, the alternative SDE
formulation we use admits a pathwise unique strong solution.

» Takeaway: Our data-driven SDE is not just a heuristic — it
corresponds to a well-defined stochastic process.
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Main Theoretical Result: Pathwise Convergence

Theorem
Assume regularity conditions and Gaussianity. Then the estimated sample
path obtained from Algorithm 1 satisfies

{E (|)?K — X,<y2)}1/2 = O(an + Bn),

where a, and B, are the convergence rates for the estimated conditional
mean function M (-) and variance function 0*(-), respectively.

This result ensures that both the mean and variance of Xj consistently
approximate those of the true process Xj. Moreover, the convergence
holds uniformly over k =1, ..., K, thereby establishing the pathwise
consistency of the estimated sample path.
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Corollary: Distributional Convergence

Corollary

Under the same assumptions as the theorem, the distribution of the
estimated process Xi converges to that of the true process Xk in
Wasserstein distance:

dy {L(XK), E(XK)} = O(an+ Ba),

where L(Xk) denotes the law of Xk, and dy is the Wasserstein distance.

This result means our method not only reconstructs individual paths
accurately, but also recovers the correct population-level distribution of
outcomes.
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Understanding the Convergence Rates

» The theoretical accuracy of our reconstructed path depends on two
key quantities: a,, and (.

P> These rates depend on the choice of regression method used to
estimate the conditional mean and variance.

[E{|m(z) — m(z)P}]"? = O(an),  [E{I0%(2) = v3(2)I}]* = O(8,)-

» If the same regression method is used for both M and 92 then
Bn = a,. Typical examples include

» Multiple linear regression: a, = 3, = n~ /2.
» Local linear regression: o, = 8, = n~ /3.
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Overview of Real Data Applications

> We apply the proposed method to two longitudinal datasets: Nepal
Growth Study and Spinal Bone Mineral Density Study.

» Both datasets feature:

» Irregular and sparse measurements across individuals.
» Short longitudinal windows per subject.
» No full-trajectory coverage across individuals.

» These properties make them well-suited for evaluating the proposed
SDE-based modelling of functional snippets.
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Summary of Real Data Applications

Nepal Growth Study
> n =183 (87 females, 96 males).

» 2-5 height measurements per child over a short window of
approximately 16 months.

Spinal Bone Mineral Density Study
» n =280 (153 females, 127 males).

» 2-4 bone mineral density measurements per subject, taken annually.
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Modelling Setup

> We apply the proposed method separately to male and female
subjects.

» Conditional mean M(-) and variance ¥2(-) are estimated using local
linear regression.
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Nepal Growth Study: Growth Monitoring

» Beyond recovering population trends, the proposed method enables
individualized growth monitoring — predicting a child’s future
development from minimal early data.

P> As new measurements become available, they can be compared
against the predicted growth trajectory to screen for developmental
deviations.
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Nepal Growth Study: Growth Monitoring

> We illustrate this using two children not included in model fitting:

> Selected female: only one height measurement at 4 months: 52.9 cm.
» Selected male: two measurements at 12 and 20 months: 63 cm and
65.1 cm.

» For each child, we simulate 100 sample paths using the recursive

procedure in Algorithm 1 and construct 5%, 50%, and 95% percentile
growth curves.
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Nepal Growth Study: Key Findings

observed growth snippets i growth curves
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Nepal Growth Study: Key Findings

observed growth snippets growth curves
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For the selected male, the new observed height at 20 months (65.1 cm)
falls below the 5% percentile, potentially indicating growth delay and

prompting clinical follow-up.
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Spinal Bone Mineral Density Study
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Spinal Bone Mineral

Spinal bone mineral density
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The reconstructed curves
reflect known physiological
trends:
» Female plateaus around
age 16.
» Male plateaus later,
around age 18.
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Spinal Bone Mineral
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The reconstructed curves
reflect known physiological
trends:

» Female plateaus around
age 16.

» Male plateaus later,
around age 18.

The model reconstructs realistic subject-specific trajectories despite data
sparsity, effectively capturing growth trends and uncertainty.
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Key Takeaways

» We proposed a dynamic modelling framework for functional snippets
via data-adaptive SDEs.

» Our approach bypasses covariance estimation and enables
subject-level path reconstruction.

P> Theoretical guarantees establish pathwise consistency of the
reconstructed trajectories.

P Applications to growth and bone density data demonstrate the
method's flexibility and clinical utility, especially for early screening
and prediction.
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