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Motivation

= Samples of networks find applications in diverse fields such as traffic mobility
and brain connectivity.

= Addressing the statistical challenges posed by samples of networks is an
emerging frontier, where each network is treated as an individual data point.

= The network space presents a significant challenge due to the absence of a
linear structure, a crucial feature in traditional statistical methodologies.

= Drawing inspiration from foundational parametric and nonparametric
regression models designed for scalar responses, particularly linear and local
linear regression, becomes a compelling avenue for addressing the complexities
associated with network responses.

Characterization of the Network Space

G = (V, E): a network with a set of nodes V' = {vy,...,v,} and a set of edge
weights B = {w;; : w;; > 0,4,5 = 1,...,m}, where w;; = 0 indicates v; and v; are
unconnected.

(CO) G,, is simple, i.e., there are no self-loops or multi-edges.
(C1) G,, is weighted, undirected, and labeled.
(C2) Edge weights w;; are bounded above by W > 0, i.e., 0 < w;; < W.

Any network satisfying Conditions (CO)-(C2) can be uniquely associated with its
graph Laplacian L = (l;;), defined as
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fors,5 =1,...,m. The network space can thus be characterized by the correspond-
ing space of graph Laplacians,
Lo,={L=(;): L=L"Ll,,=0,, —W <I; <0 fori# j}, (1)

where 1,, and 0,,, are the m-vectors of ones and zeroes, respectively.

Proposition 1

The space L,,, defined in (1), is a bounded, closed, and convex subset in R™ of dimen-
sionm(m —1)/2.

The convexity and closedness of L,,, as demonstrated in Proposition 1, ensure the
existence and uniqueness of projections onto £,,, which will be utilized in the
proposed regression approach.

Choice of Metrics

Although the space of graph Laplacians £,, lacks a linear structure, it is generally
considered a metric space when equipped with an appropriate metric. There are
various metrics to choose from for £,, and one common choice is the Frobenius
metric, defined as

dp(Ly, Ly) = [tr{(Ly — Ly)'(Ly — Ly) 1",

While dg is the simplest among the possible metrics on L£,,, it exhibits a swelling
effect, particularly for positive definite matrices.

Let S denote the space of real symmetric positive semi-definite m x m matrices.
Another popular metric, designed to mitigate the swelling effect, is the power metric,

drpa(Ly1, L) = drp{F,(L1), Fo(L2)},

where F,(S) = UANYU’, and UAU’ represents the spectral decomposition of S € S;'.
For a = 1, dr, reduces to the Frobenius metric dp. For a = 1/2, the square root
metric dr /2 is a canonical choice that has been widely studied.
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Fréchet Mean and Conditional Fréechet Mean

Consider the random pair (X, L) ~ F', where X takes values in R?, L. € L,, is a graph
Laplacian, and F' denotes a suitable probability law. We investigate the dependence
of L on covariates of interest X.

The Fréechet mean and conditional Fréchet mean are generalizations of the mean and
conditional mean from the real line to general metric spaces. Let Y € R denote a
random variable on the real line and let d represent either the Frobenius or power
metric.

* Note that E(Y) = argmin E{(Y — y)°} and E(Y|X) = argmin E{(Y — y)?| X }.
yeR yeR

= Mean — Fréchet mean:
E(Y) — argmin E{d*(L,w)}.
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= Conditional mean — conditional Fréchet mean:
E(Y|X) — argmin E{d*(L,w)|X}.
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Global and Local Network Regression

To model the relationship between networks and Euclidean predictors, a natural tar-
get Is the conditional Frechet mean. Recall that for scalar responses, linear regression
assumes a linear relationship between X and the conditional mean of Y given X, i.e.,

where 5, denotes the slope vector. Using ordinary least squares, the regression func-
tion can be alternatively characterized by
EY|X =x) = E{sq(z)Y} = argmin E{sq(z)(Y — y)Q},
yeR
where the weight function sq(z) = 1+ (X — p)> Yo — p) with p = FE(X) and
>, = Var(X).

The global network regression, extending linear regression to network responses, is
defined as
me(x) = argmin E{sq(z)d*(L,w)}, (2)
wEL,
where d can be either the Frobenius or power metric. Suppose that (X, L) ~ F, k =
1,...,n are independent and define
N P _ _
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as the sample mean and covariance. The regression function in (2) can be estimated
by
1 n
mea(x) = argmin — Z spa(2)d?(Ly, w), (3)
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where Skg(af) =1+ (Xk — X)li_l@f — X)

The local network regression, a generalization of local linear regression to network
responses, follows a similar form but employs a different weight function.

Theorem 1
Let the space of graph Laplacians L,, be endowed with the Frobenius metric dg. Then
for a fixed x € RP, it holds for mg(x) and ma(z) as per (2) and (3) that,
dr{me(z), me(x)} = Oy(n~"7).
Furthermore, for a given B > 0 and any € > 0,

Hs|1|1p dp{mg(z), ma(x)} = Op(n_l/{2<1+5>}).
z||<B
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Remark

= The global network regression estimate in (3) using the Frobenius metric dp can be
simplified as a projection P, onto L,,

n

Mma(x) = argmin d5{Bg(z),w} = P {Bg(z)}, Ba(r) = ! Z ska(x) L.

n
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= Both pointwise and uniform rates of convergence have been established for global
and local network regression, utilizing both the Frobenius and power metrics.

= Pointwise rates of convergence are optimal for both global and local network
regression when employing the Frobenius and power metrics with 0 < o < 1.

New York Yellow Taxi System After COVID-19 Outbreak

May 02, Sat, 230 new cases

Jun 25, Thu, 55 new cases

= Responses:
traffic networks
from Apr 12 to
Sep 30, 2020
in Manhattan.

= Predictors:
COVID-19 new
cases per day,
weekend
indicator.

= Model: global
network
regression.
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Figure 1. True (left) and fitted (right) networks on May 2, 2020 and Jun 25,
2020. The corresponding number of COVID-19 new cases are in the
headline.

Dynamics of Networks in the Aging Brain

age = 65, 10 communities age =70, 12 communities

= Responses: functional brain
connectivity networks.

= Predictors: age.
= Model: local network regression.

= The number of communities for
ages 65, /0, /5, and 80 is 10, 12,
12, and 16, respectively.

= These communities are found to
be associated with different
anatomical regions of the brain.

= Higher age is associated with
increased local interconnectivity
and cliquishness.

Figure 2. Topological representation using
spectral community detection for predicted
functional connectivity networks at different
ages (years). The communities comprising 10
or more regions of interest are highlighted
using colored polygons.
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