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Samples of random objects (non-Euclidean data) that take values in a
metric space are becoming increasingly prevalent.

Due to the absence of a vector space structure, basic statistical tools
for scalar/vector data are no longer applicable.

Examples of random objects:

» networks,

» probability measures,

> covariance/correlation matrices,

> etc.
Applications: brain imaging studies, multi-cohort studies, human
longevity, etc.
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» Networks, a prominent example of random objects, arise in numerous

applications, e.g.,
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Figure 1: Left: transport network on Dec 25, 2020 in Manhattan. Right:
brain functional connectivity network with 40 regions of interest (ROls).

» Addressing the statistical challenges posed by samples of networks is
an emerging frontier, where each network is treated as an individual

data point.
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» How does a network change as a function of vector covariates?

» This question can be addressed through regression analysis where

» Response: network;
» Predictors: RP.

Related work:
» Severn et al., 2021, 2022: embed the space of graph Laplacians in a
Euclidean space, where regression is applied using extrinsic methods.

» Calissano et al., 2022, 2023: implement linear regression in the

Euclidean space and then project back to the “graph space” through
a quotient map.
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Example: Dynamics of Networks in the Aging Brain

» As a person gets older, changes occur in all parts of the body,
including the brain.

» Certain parts of the brain shrink, including those important to
learning and other complex mental activities.
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Example: Dynamics of Networks in the Aging Brain

» The Alzheimers Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu).

» Response: functional brain connectivity network of each subject.

» Predictor: the corresponding age.
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Figure 2: Construction of functional brain connectivity networks (Lynn & Bassett,

2019).
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Characterization of the Space of Networks

Gm = (V, E): a network with a set of nodes V= {vi,...,vpn} and a set of
edge weights E= {w;;: w;; > 0,i,j=1,..., m}, where wj; = 0 indicates v;
and v; are unconnected.

(CO) Gy, is simple, i.e., there are no self-loops or multi-edges.
(C1) G, is weighted, undirected, and labeled.
(C2) Edge weights wj; are bounded above by W >0, i.e., 0 < wy; < W.
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Characterization of the Space of Networks

Any network satisfying Conditions (C0)—(C2) can be uniquely associated
with its graph Laplacian L = (/;;), defined as

[ — — Wijj, I#J
= .
}E:k9gi‘40ka I=J

fori,j=1,....,m.
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Characterization of the Space of Networks

The space of networks can thus be characterized by the corresponding
space of graph Laplacians,

Lom={L=(lj): L=1" L1p=0pm; —W< ;<0 fori#j}, (1)

where 1., and 0, are the m-vectors of ones and zeroes, respectively.
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Characterization of the Space of Networks

Proposition

The space L,, defined in (1), is a bounded, closed, and convex subset in
R™ of dimension m(m —1)/2.

» The convexity and closedness of £, as shown in Proposition 1
ensures the existence and uniqueness of projections onto L, that we
will use in the proposed regression approach.
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Choice of Metrics

» There are various metrics to choose from for £,, and one common
choice is the Frobenius metric, defined as

dr(L1, Lo) = [tr{(L1 — La)' (L — L2)}]2.
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Choice of Metrics

» Let S, denote the space of real symmetric positive semi-definite
m X m matrices.

» Another popular metric is the power metric,
dra(L1, L2) = de{Fa(L1), Fa(L2)},

where F,(S) = UN*U', and UAU represents the spectral
decomposition of S € S;..

» For a =1, dr, reduces to the Frobenius metric dr.

11/27



Fréchet Mean and Conditional Fréchet Mean

» Consider the random pair (X, L) ~ F, where X takes values in RP,
L e L, is a graph Laplacian.

» The Fréchet mean and conditional Fréchet mean are generalizations
of the mean and conditional mean from the real line to general metric
spaces.

> Let Y € R denote a random variable on the real line.

E(Y) = argmin E{(Y— y)?}, E(YIX) = argmin E{(Y— y)?|X}.
yeR yeR
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Fréchet Mean and Conditional Fréchet Mean

E(Y) = argerlgin E{(Y—-y)?}, EVYX) = ar}g/er£in E{(Y—y)?|X}.

» Mean ~~ Fréchet mean (Fréchet, 1948):

E(Y) ~ a:}gergin E{d*(L,w)}.

» Conditional mean ~~ conditional Fréchet mean (Petersen & Miiller,
2019):
E(Y|X) ~ arg min E{d*(L,w)|X}.

weLlm

» d can be either the Frobenius or power metric.
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Global Network Regression

> To model the relationship between networks and vector predictors, a
natural target is the conditional Fréchet mean (Petersen & Miiller,
2019),

m(x) = arg min E{d?(L,w)|X = x}. (2)

wELm

» Recall that for scalar responses, linear regression assumes a linear
relationship between X and the conditional mean of Y given X, i.e.,

E(YIX) = Bo + BiX.
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Global Network Regression

Using ordinary least squares, the regression function can be alternatively
characterized by

E(YIX =) = argrmin E{sc()(Y ~ »)*)

where the weight function sg(x) = 1 + (X — p)'S " 1(x — p) with u = E(X)
and ¥ = Var(X).
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Global Network Regression

The global network regression, extending linear regression to network
responses, is defined as

me(x) = arg min E{s¢(x)d?(L,w)}, (3)

wELM

where d can be either the Frobenius or power metric.
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Global Network Regression

» Suppose that (Xk, Lx) ~ F,k=1,...,n are independent and define

X = Zxk, y == Z(Xk — X)( Xk — X)'.

k_l

» The regression function in (3) can be estimated by

me(x) _argmmstkG P (Ly,w), (4)

weﬁm

where s.c(x) = 14 (X — X)'S1(x — X).
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Local Network Regression

The local network regression, a generalization of local linear regression to
network responses, follows a similar form but employs a different weight
function.
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Rates of Convergence

Pointwise and uniform rates of convergence:

Global network regression

Local network regression

Frobenius metric

Power metric

Remark

The power metric necessitates specific considerations when investigating
asymptotic properties.
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Rates of Convergence Using Frobenius Metric

Theorem

Let the space of graph Laplacian matrices L, be endowed with the
Frobenius metric de. Then for a fixed x € RP, it holds for mg(x) and
mg(x) as per (3) and (4) that,

dr{me(x), g(x)} = Op(n~*/2). (5)

Furthermore, for a given B > 0 and any € > 0,

sup de{mg(x), g(x)} = Op(n~ Y/ 121+, (6)
Ixlle<B
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Rates of Convergence Using Power Metric

Theorem

Let the space of graph Laplacian matrices L, be endowed with the power
metric dr,,. Then for a fixed x € RP, it holds for mg(x) and Mg(x) that,

n1/2 a
ar{me(). re()} = {g”gn_l/@)a)) el

Furthermore, for a given B > 0 and any € > 0,

Op(n~ /2049y o< <1
Op(nfl/{2(1+s)a}) a>1 ’ (8)

Ixlle<B

sup de{mg(x), mg(x)} = {
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Global v.s. Local Network Regression

» While global network regression relies on stronger model assumptions,
it does not require a tuning parameter and is applicable for
categorical predictors.

» Local network regression, by contrast, is more flexible and may be
preferable as long as the regression relation is smooth, the covariate
dimension is low and the covariates are continuous.

22/27



Dynamics of Networks in the Aging Brain

» Data: n = 404 cognitively normal elderly subjects with age ranging
from 55.61 to 95.39 years.

P> Response: functional brain connectivity network of each subject.
» Predictor: the corresponding age.

> Model: local network regression.
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Dynam'cs Of Networks age = 65, 10 communities age=70,12z:olrnmunities
in the Aging Brain ’ o

» The number of
communities for ages 65,
70, 75, and 80 is 10, 12,
12, and 16, respectively.

N \Vi-YA T
i e HIF
e -
® Central region ® Parietal lobe ® CQOccipital lobe

® Temporal lobe ® Orbital surface ® Limbic lobe
24 /27



Dy n a m |CS Of N etwor ks age =65, 10 fommunities age =70, 12 colmmunities
in the Aging Brain ‘

» The number of
communities for ages 65,
70, 75, and 80 is 10, 12,
12, and 16, respectively.

» These communities are
found to be associated
with different anatomical
regions of the brain.

Central region ® Parietal lobe ® CQOccipital lobe

Temporal lobe ® Orbital surface ® Limbic lobe
24 /27



Dy n a m |CS Of N etwor ks age = 65, 10 communities age =70, 12 c’olmmunities
in the Aging Brain

» The number of
communities for ages 65,
70, 75, and 80 is 10, 12,
12, and 16, respectively.

» These communities are
found to be associated
with different anatomical
regions of the brain.

» Higher age is associated
with increased local
interconnectivity and
cliquishness.

® Central region ® Parietal lobe ® CQOccipital lobe

® Temporal lobe ® Orbital surface ® Limbic lobe
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Characterization of the Space of Networks
L=D-A
Degree matrix D Adjacency matrix A
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Choice of Metrics

» While dF is the simplest among the possible metrics on Ly, it suffers
from the swelling effect. = The Euclidean average preserves the
trace, while the determinant typically inflates.

» For o = 1/2, the square root metric dr 1/, is a canonical choice that
has been widely studied.

Figure 3: Interpolation of two matrices, where the top row is obtained using dg
and the bottom row is obtained using dg 1/, (Dryden et al., 2009).
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Global Network Regression

The global network regression estimate in (4) using the Frobenius metric
dr can be simplified as a projection P, onto L,

rg(x) = arg min d{Be(x), w} = Pr, {Be(x)}, (9)

WELM

where

Be(x) = % D sec(¥) Lk
k=1
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Network Regression Using Power Metric

» The largest eigenvalue of L is bounded, say by D, a nonnegative
constant depending on m and W.

» Define the embedding space M, to be a subset of S,J;,
My ={Se St \(S) < ), (10)

where A\1(S) denotes the largest eigenvalue of S.

The image of L, under the matrix power map F,, i.e., Fo(Lp), is a
subset of M.
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Network Regression Using Power Metric

Fawm
Lo M,

P, Fija
Figure 4: Schematic diagram for network regression with power metric dr .

» Think about data transformation in linear regression: Y — Y*.

» Global and local network regression are carried out in the embedding
space M, using dr, where the existence and uniqueness can be

ensured.
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Optimal Pointwise Rates of Convergence

» Both pointwise and uniform rates of convergence have been
established for global and local network regression, utilizing both the
Frobenius and power metrics.

» Pointwise rates of convergence are optimal for both global and local
network regression when employing the Frobenius and power metrics
with 0 < a < 1.
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New York Yellow Taxi System After COVID-19 Outbreak
» Responses: traffic networks from Apr 12, 2020 to Sep 30, 2020.
» Predictors: COVID-19 new cases per day, weekend indicator.
> Model: global network regression.

Jun 25, Thu, 55 new cases

May 02, Sat, 230 new cases

400

1,100
2,100
5,800

Figure 5: True (left) and fitted (right) networks on May 2, 2020 and Jun 25,
2020. The corresponding number of COVID-19 new cases are in the headline.
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New York Yellow Taxi System
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Assumptions for Local Network Regression (cont'd)

In the following, fx(-) and fx.(:,w) stand for the marginal density of X and the
conditional density of X given L = w, respectively. T is a closed interval in R
with interior 7°.

(A1) The kernel K(-) is a probability density function, symmetric around zero.
Furthermore, defining Kj; = fR u)t/du, |Kia| and |Kays| are both finite.

(A2) fx(-) and fx).(-,w) both exist and are twice continuously differentiable, the
latter for all w € Lm, and sup,,, [(0%fx1/0x*)(x,w)| < co. Additionally, for
any open set U C L, fU dFy x(x,w) is continuous as a function of x.
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(A3)

(A4)

The kernel K(-) is a probability density function, symmetric around zero,
and uniformly continuous on R. Furthermore, defining Kj = [, K(uYukdu
for j, k € N, |K14| and |Kys| are both finite. The derivative K’ exists and is
bounded on the support of K, i.e., supk(x>o |K'(x)| < oo; additionally,

Sz 21K (%)](|xlog IX|[)}/2dx < oo.

fx(-) and fxj.(-,w) both exist and are continuous on 7" and twice
continuously differentiable on 7, the latter for all w € £,,. The marginal
density fx(-) is bounded away from zero on T, inf,c7 fx(x) > 0. The
second-order derivative fy is bounded, sup, 7o |fx(x)| < co. The
second-order partial derivatives (0?fx. /0x°)(-,w) are uniformly bounded,
SUPyeTo wer,, |(87fxL/0x)(x,w)| < oo. Additionally, for any open set
UC L, [,dFyx(x w) is continuous as a function of x; M(-, x) is
equicontinuous, i.e., for all x€ T,

limsup sup |M(w,z) — M(w,x)| = 0.

zZ=X WELy
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Local Network Regression

For X € R, consider a smoothing kernel K(-) corresponding to a
probability density and Kj(-) = h~*K(-/h) with h a bandwidth.

my n(x) = arg min E[s.(x, h)d*(L,w)], (11)
weLm
where s;(x, h) = Kn(X — x)[2 — p1(X = x)] /o3 with
i = E[Kn(X — x)(X — x))] for j=0,1,2 and 03 = popz — 13.

1 n
MLa(x) = argmin =Y " s (x, h)d(Li, w). (12)
weL, N =1
Here SkL(X, h) = Kh(Xk — X)[[ZQ — /Aﬁl(Xk — X)]/a‘g, where

=130 Kn(Xk — x)(Xk — x) for j=0,1,2 and 65 = fiofl2 — {17
The dependency on n is through the bandwidth sequence h = h,,.
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Local Network Regression

Note that for the case of X € RP with p > 1, we still have (11) and (12).
However, the weight function takes a slightly different form,

1 _
st(x h) = ——————Kn(X = X)[1 = piypi3 (X = X)),
Ho — HiHy M1
where po = E[Kp(X — X)], u1 = E[Kn(X — x)(X — x)], and
p2 = E[Kp(X — x)(X — x)(X — x)'] is non-degenerate. The sample version
skL(X, h) can be defined similarly.
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Rates of Convergence Using Frobenius Metric

Theorem

Let the space of graph Laplacian matrices L, be endowed with the
Frobenius metric dr. Suppose (A1), (A2) hold, then for a fixed x € R, it
holds for m(x), my_s(x), and my n(x) as per (2), (11), and (12),
respectively that

de{m(x), men(x)} = O(h),
dr{mn(x), MLa(x)} = Op{(nh)~2}.
With h ~ n=1/% it holds that

2

de{m(x), My n(x)} = Op(n~5).
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Rates of Convergence Using Frobenius Metric

Theorem

Furthermore, suppose (A3), (A4) hold, for a given closed interval T, if
h — 0, nh?(—log h)™! — o0 as n — oo, then for any ¢ > 0,

sup de{m(x), m_4(x)} = O(h®),
x€T

5up dF{m1p(x), A, n(x)} = Op(max|(nh?) 7%, {n?(~log h) 1} ~]).

With h ~ n=1/(6+2¢) it holds that

sug de{m(x), My n(x)} = OP(nfaJ%a)_
Xe
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Rates of Convergence Using Power Metric

Theorem

Let the space of graph Laplacian matrices L, be endowed with the power
metric dr . Suppose (A1), (A2) hold, then for a fixed x € R, it holds for
m(x), my p(x), and iy n(x), respectively that

2 (6%
dre{m(x), m_p(x)} = {gE:i)) Z<> ) <1

de{my n(x), M n(x)} = {OP{(nh)_21} 0<a<l |

With h ~ n=/% it holds that
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Rates of Convergence Using Power Metric

Theorem
Furthermore, suppose (A3), (A4) hold, for a given closed interval T, if
h — 0,nh*(—log h)~! — oo as n — oo, then for any € > 0,

sup de{m(x), mp p(x)} =
x€T

)

O(h?) O0<ac<l
O(hé) a>1

sup dF{mL,h(X)a I’7\7L7n(X)} =
x€T

{op(max{(n/#)zie, (nh(—logh)™1)72}) O0<a<l

Op(max{(nh?)" 5@ (nh2(—log ) 1) 3 }) a > 1

16/23



Rates of Convergence Using Power Metric

Theorem
With h ~ n=1/(6+2) it holds that

sup de{m(x), M o(x)} =

1
Op(n3<) O0<a<l
x€T ‘

1
Op(n_a(3+€)) a>1
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Computational Details

To implement P, (B) where B = (bj;) is a constant m x m matrix, we
reformulate it into the following convex optimization problem.

minimize AL) = d*(B, L) ZZ i — li)?

i=1 j=1
/,'j—/j,'ZO, 1§I,_/§m,

m
d =0, 1<i<m,

subject to

W< <0, 1<i#j<m,

where L = (/) is a graph Laplacian.
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Model Inference

The Fréchet R? coefficient of determination is defined as

_ ., _ HP{L me(9}]
R =1-— V®G .

The corresponding sample version is

g g 2 P{le (X}
© ZZ:l C{Z(Lkvdj@)

where

1 n
Og = arg min — Z (L, w)
weQ2 N =1

is the sample Fréchet mean.
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Model Selection

The adjusted Fréchet R? for a fitted submodel M using g < p predictors
is defined as

Reaai(M) = R~ (1= RE), ——. (13)

where the sample version IA?@@dj(M) can be obtained by plugging in R’é
Let C, be the class of submodels using g predictors. Computing

* = argmax max R2 (M), 14
q liqu MeC, @,ad]( ) ( )

the final model can then be taken as M* = arg maX (ec, . ﬁ’é’adj(/\/l).

Another alternative for model selection is to minimize prediction error,
which can be estimated by k-fold cross-validation.
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Power Metric

The convexity of the target space is crucial in the proof of existence and
uniqueness for the minimizers in (2)—(4) and (11)—(12). Indeed, as stated
in Deutsch (2001, Chapter 12), every Chebyshev subset of a
finite-dimensional Hilbert space is convex. Let K be a nonempty subset of
the inner product space X, then Kis called a Chebyshev subset if each

x € X has exactly one best approximation in K. It can be shown that
Fo(Lm) as a subset of R™ is not convex, suggesting that it cannot be a
Chebyshev subset. Hence uniqueness for the minimizers in (2)—(4) and
(11)—(12) cannot be guaranteed. For this reason, we consider embedding
Fo(Lm) in My, as defined in (10), where uniqueness for the minimizers in
(2)—(4) and (11)—(12) can be ensured.
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Holder Continuity for F,

Suppose that Kis a set in R™, E is a non-empty subset of K, and

0 < B < 1. A function g: K+— R™ is uniformly Holder continuous with
exponent /3 and Holder coefficient H in the set E, shortly (3, H)-Holder
continuous when there exists H > 0 such that

lg(x) — gW)lF < Hllx—yllZ, forall x,y € E.

For 8 = 1 the function g is said to be Lipschitz continuous in E with
Lipschitz constant H, shortly H-Lipschitz continuous.
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Holder Continuity for F,

Proposition
Define € as {S € Sif - M\1(S) < C}, where M\1(S) is the largest eigenvalue
of S and C > 0 is a constant. Then the matrix power map F, is

> (a,m(1=®)/2)_-Hélder continuous in S for 0 < a < 1,

» and aC* L-Lipschitz continuous in £y, for a > 1.
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