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Probability Measures

Probability measures (distributions), a prevalent example of non-Euclidean
data, arise in numerous applications, including the analysis of mortality,
brain connectivity, financial returns, and multi-cohort studies.

How does a distribution change as a function of vector covariates?
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Wasserstein Space

▶ For a closed interval Ω with Borel σ-algebra B(Ω), let W be the set
of probability measures over (Ω,B(Ω)), with finite second moments.

▶ The space W is a metric space with the 2-Wasserstein metric,

d2
W(µ1, µ2) =

∫ 1

0
{F−1

µ1 (p)− F−1
µ2 (p)}

2dp,

where the quantile function F−1
µ is the left continuous inverse of the

cumulative distribution function Fµ,

F−1
µ (p) = inf{x ∈ Ω : Fµ(x) ≥ p}, p ∈ [0, 1].
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▶ Data: {(Xi, νi)}n
i=1, where Xi ∈ Rp, νi ∈ W .

▶ In practice, access to the entire distribution is typically unavailable.
Instead, one has samples of independent data {Yij}Ni

j=1 that are
generated according to the distribution νi.

▶ Current approaches often involve a preliminary distribution estimation
step, where a density estimate is substituted for the unobservable
distribution.

▶ Related work: Bigot et al. (2018), Petersen and Müller (2019),
Petersen et al. (2021).
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Limitations of Existing Methods

▶ The random distribution is absolutely continuous with respect to the
Lebesgue measure and thus possesses a density.

▶ The random density is assumed to follow certain smoothness or
regularity conditions to achieve a reasonable rate of convergence.

▶ The minimum number of observations min1≤i≤n Ni is required to
increase to infinity at a fast rate, typically faster than n.

What actions should be taken if the number of observations Ni varies
significantly across different distributions, with some not even increasing
with n?
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Example: Cohort-specific BMI distribution for US preschool
children

▶ The Environmental influences on Child Health Outcomes (ECHO)
program.

▶ As a multi-cohort study, ECHO brings separate cohorts together so
that researchers can access data from heterogeneous populations of
children followed from the prenatal period through adolescence.

▶ It is of interest to study the role of demographic factors in child
development, measured in terms of body mass index (BMI).

▶ Response: distribution of BMI for 4-year-old children for each cohort.
▶ Predictors: average BMI of mothers, average parental education, and

proportion of Asians.
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Example: Cohort-specific BMI Distribution for US Preschool
Children

Table 1: Number of weight and height measurements for each cohort

Cohort AAA01 AAD01 AAE01 AAF01 AAJ01 AAU01 AAV01 AAW02
Boys 139 70 77 35 9 10 160 12
Girls 101 70 81 15 7 8 145 8
Total 240 140 158 50 16 18 305 20
AAX04 AAX06 ADA01 AGA01 AJA02 AJA03 AKA01 AKA02 ALA01
83 124 8 3 44 6 7 76 134
67 110 7 1 38 14 3 71 128
150 234 15 4 82 20 10 147 262
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Figure 1: Kernel density estimates of BMI distributions of US preschool boys and
girls for AAV01 and AGA01 cohorts. The corresponding BMI measurements are
shown as ticks.
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Wasserstein Regression with Empirical Measures

Rather than substituting density estimates for the unobservable
distributions, we suggest employing empirical measures
ν̂i = (1/Ni)

∑Ni
j=1 δYij , where Ni ≥ 1 and δYij denotes the Dirac measure at

Yij.
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Wasserstein Regression with Empirical Measures

The proposed approach
▶ avoids smoothing bias and tuning parameter choice in the

pre-smoothing step.
▶ is computationally more feasible, especially considering the

time-consuming nature of automatically selecting the bandwidth for
density estimation in a data-driven manner for each individual
distribution.

▶ achieves consistent density estimates even for distributions with sparse
numbers of observations by leveraging information across the sample.

9 / 18



Global Regression with Empirical Measures

▶ To model the relationship between distributions and vector predictors,
a natural target is the conditional Fréchet mean (Petersen & Müller,
2019),

m(x) = argmin
µ∈W

E{d2
W(ν, µ)|X = x}. (1)

▶ Recall that for scalar responses, linear regression assumes a linear
relationship between X and the conditional mean of Y given X, i.e.,

E(Y|X) = β0 + β′
1X.

10 / 18



Global Regression with Empirical Measures

Using ordinary least squares, the regression function can be alternatively
characterized by

E(Y|X = x) = argmin
y∈R

E{sG(x)(Y − y)2},

where the weight function sG(x) = 1 + (X − θ)′Σ−1(x − θ) with θ = E(X)
and Σ = Var(X).
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Global Regression with Empirical Measures

▶ Extending linear regression to distributional responses, the regression
function is defined as

mG(x) = argmin
µ∈W

E{sG(x)d2
W(ν, µ)}. (2)

▶ Suppose that (Xi, νi) ∼ F, k = 1, . . . , n are independent and define

X =
1
n

n∑
i=1

Xi, Σ̂ =
1
n

n∑
i=1

(Xi − X)(Xi − X)′.
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Global Regression with Empirical Measures

▶ The regression function in (2) can be estimated by

m̃G(x) = argmin
µ∈W

1
n

n∑
i=1

siG(x)d2
W(νi, µ), (3)

where siG(x) = 1 + (Xi − X)′Σ̂−1(x − X).
▶ Using empirical measures ν̂i in lieu of the unobservable measures νi as

responses, the global Regression with Empirical Measures (REM) is

m̂G(x) = argmin
µ∈W

1
n

n∑
i=1

siG(x)d2
W(ν̂i, µ). (4)
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Rates of Convergence

Theorem
For a fixed x ∈ Rp, the global REM estimate defined in (4) satisfies

dW{m̂G(x),mG(x)} = Op(n−1/2 +
√

E(N−1/2)).

Furthermore, for a given constant B it holds that for any ε > 0,

sup
∥z∥≤B

dW{m̂G(x),mG(x)} = Op(n−1/{2(1+ε)} +
√

E(N−1/2)).
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Cohort-specific BMI Distribution for US Preschool Children
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Figure 2: Fitted densities of BMI distributions of US preschool boys and girls for
AAV01 and AGA01 cohorts using global REM (solid) and Petersen and Müller
(2019) (dashed), along with direct kernel density estimates (dotdash). The
corresponding BMI measurements are shown as ticks.
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Cohort-specific BMI Distribution for US Preschool Children
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Figure 3: Predicted BMI densities of US preschool boys and girls at different
predictor levels.
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Questions?
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Fréchet Mean and Conditional Fréchet Mean

▶ Consider the random pair (X, ν) ∼ F, where X takes values in Rp,
ν ∈ W is a distribution.

▶ The Fréchet mean and conditional Fréchet mean are generalizations
of the mean and conditional mean from the real line to general metric
spaces.

▶ Let Y ∈ R denote a random variable on the real line.

E(Y) = argmin
y∈R

E{(Y − y)2}, E(Y|X) = argmin
y∈R

E{(Y − y)2|X}.
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Fréchet Mean and Conditional Fréchet Mean

E(Y) = argmin
y∈R

E{(Y − y)2}, E(Y|X) = argmin
y∈R

E{(Y − y)2|X}.

▶ Mean ⇝ Fréchet mean (Fréchet, 1948):

E(Y)⇝ argmin
µ∈W

E{d2
W(ν, µ)}.

▶ Conditional mean ⇝ conditional Fréchet mean (Petersen & Müller,
2019):

E(Y|X)⇝ argmin
µ∈W

E{d2
W(ν, µ)|X}.
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Cohort-specific BMI Distribution for US Preschool Children
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Figure 4: Prevalence of obesity for US preschool boys and girls at different
predictor levels.
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